Determinación de una Función de Producción en Maíz (*Zea mays*) a partir de Nitrógeno, Fósforo y Potasio

Johngesson Roderilde Reyes Ocaña

Zamorano, Honduras

Diciembre, 2008

ZAMORANO CARRERA DE ADMINISTRACIÓN DE AGRONEGOCIOS

Determinación de una Función de Producción en Maíz (*Zea mays*) a partir de Nitrógeno, Fósforo y Potasio

Proyecto especial presentado como requisito parcial para optar al título de Ingeniero en Administración de Agronegocios en el Grado Académico de Licenciatura

Presentado por

Johngesson Roderilde Reyes Ocaña

Zamorano, Honduras

Diciembre, 2008

Determinación de una Función de Producción en Maíz (Zea mays) a partir de Nitrógeno, Fósforo y Potasio

Prese	entado por:
Johngesson Ro	oderilde Reyes Ocaña
Aprobado:	
Oscar D. Zelaya M., Ph.D. Asesor Principal	Adolfo A. Fonseca A., M.A.E. Director interino Carrera Administración de Agronegocios
Fredi Arias G., Ph.D. Asesor	Raúl Espinal, Ph.D. Decano Académico
J. Guillermo Berlioz, B. Sc. Asesor	Kenneth L. Hoadley, D.B.A. Rector
J. Guillermo Berlioz, B. Sc. Coordinador de Tesis Carrera de Administración de Agronegocios	

RESUMEN

Reyes J. 2008. Determinación de una Función de Producción en Maíz (*Zea mays*) a partir de Nitrógeno, Fósforo y Potasio. Proyecto de graduación del programa de Ingeniería en Administración de Agronegocios. Zamorano, Honduras. 45p.

La necesidad de realizar un estudio para determinar una función de producción en maíz. es por la falta de una dosis más efectiva, para estimar los factores de producción adecuados y maximizar económicamente su función de ganancias en Retalhuleu, Guatemala. El objetivo general fue determinar una Función de Producción (modelo) para la producción de maíz, estableciendo también las cantidades para maximizar la producción y el óptimo económico. La investigación comprendió una fase de campo y otra de análisis estadístico-económico. La fase de campo incluyó un experimento agrícola para conocer la relación técnica de insumo a producto. Las variables independientes fueron: nivel de nitrógeno (N), fósforo (P₂O₅) y potasio (K₂O) en (Kg/ha), y la variable respuesta fue rendimiento de maíz en (qq/ha). El diseño utilizado fue (BCA) con 10 tratamientos y 4 repeticiones. El análisis estadístico fue a través de análisis de correlación, de varianza y prueba de Durbin Watson, para los diferentes niveles de N, P₂O₅ y K₂O en las distintas funciones propuestas; se seleccionó 1 modelo de los 9 analizados. Entre lo más relevante de los resultados en la investigación fueron las cantidades para maximizar la producción de maíz éstas son: 50.98 Kg. de N/ha., 100 Kg. de P₂O₅/ha. y 100 kg. de K₂O/ha. para una producción de 101.86 qq/ha de Maíz.; y para obtener el máximo beneficio económico son: 23.2 Kg. de N/ha., 100 de Kg. P₂O₅/ha. y 100 kg. de K₂O/ha. para una producción de 97.57 gg/ha de Maíz.

Palabras clave: Análisis estadístico, economía agrícola, fertilización, modelo económico.

CONTENIDO

	Portadilla	. i
	Portadilla Página de firmas	ii
	Resumen Contenido	iii
	Contenido	iv
	Índice de Cuadros, Figuras y Anexo	V
۱.	INTRODUCCIÓN	1
2.	METODOLOGÍA	8
3.	RESULTADOS Y DISCUSIÓN	14
1.	CONCLUSIONES Y RECOMENDACIONES	20
5.	BIBLIOGRAFÍA	21
5.	ANEXOS	23

ÍNDICE DE CUADROS, GRÁFICOS Y ANEXOS

Cua	ndro Página
	Clasificación botánica del Maíz
	Análisis de regresión del modelo seleccionado de la Función de Producción de Maíz 16
Grá	$\mathcal E$
1. K	desiduos Estándares del Modelo No. 9, para la función de producción en Maíz16
Ane	Página Página
1.	Croquis de la Investigación
2.	Mapas de Suelo, Zona de Vida y Precipitación Pluvial de Guatemala
3.	Gráficas de Distribución y Crecimiento de Costos a Nivel Mundial en Maíz27
4.	Cuadro Modelo 1, para la determinación de la función de producción en Maíz28
5.	Cuadro Modelo 2, para la determinación de la función de producción en Maíz29
6.	Cuadro Modelo 3, para la determinación de la función de producción en Maíz30
7.	Cuadro Modelo 4, para la determinación de la función de producción en Maíz31
8.	Cuadro Modelo 5, para la determinación de la función de producción en Maíz32
9.	Cuadro Modelo 6, para la determinación de la función de producción en Maíz33
10.	Cuadro Modelo 7, para la determinación de la función de producción en Maíz34
11.	Cuadro Modelo 8, para la determinación de la función de producción en Maíz35
12.	Cuadro Modelo 9, para la determinación de la función de producción en Maíz36
13	Cuadro de Residuales del Modelo 8, para determinar la función de producción37
14	Cuadro de Residuales del Modelo 9, para determinar la función de producción38
15.	Cuadro datos de campo de la investigación en Maíz

1. INTRODUCCIÓN

1.1 DEFINICIÓN DEL PROBLEMA

La necesidad de realizar un estudio para determinar una función de producción en maíz (**Zea mays**), se marca por la falta de una dosis más efectiva, para estimar los factores de producción adecuados (determinación del óptimo técnico) y maximizar económicamente su función de ganancias. En Retalhuleu, Guatemala, esta necesidad se acentúa por el alto costo de los fertilizantes químicos, los cuales representan uno de los costos variables más importantes para estos agricultores (Anexo 3).

Lo antepuesto, es porque las aplicaciones que realizan los productores de mercado¹, la efectúan para cubrir las necesidades del cultivo y no se toma en cuenta "La ley de los retornos marginales decrecientes, en donde se establece que a medida que las unidades de insumos variables son agregados a unidades de uno o más insumos fijos, después de un cierto punto, cada unidad incremental (adiciones de una misma cantidad), del insumo variable produce eventualmente menos y menos producto adicional" (Arias, 2007). Arias también enfatiza que por ello que no se tiene un óptimo técnico y económico para la producción de dicho cultivo en la tabla 3.1 de su guía de estudio.

1.2 REVISIÓN DE LITERATURA Y ANTECEDENTES

El maíz es una planta muy conocida como cultivo, es originaria del continente americano y se ha venido cultivando en el mismo desde hace unos 10,000 años, destacando su importancia como alimento en casi todas las comunidades americanas.

El cultivo de maíz ha sido fundamentalmente importante en la supervivencia de civilizaciones. Así también en su cultura y vida religiosa, el maíz era aclamado como "El rey de los Cereales" tenía alta capacidad de producción, adaptabilidad y adaptación. El maíz es uno de los cereales que posee mayor capacidad de producción, pues por ser una planta C4, es más eficiente en la producción de materia seca por área y consecuente producción de granos. Por esta característica se tornó en el más importante cultivo en la alimentación humana y animal, e indispensable en el proceso de rotación de cultivos en la siembra directa, proporcionando una mayor cantidad de paja y materia orgánica para el sistema. La gran diversidad genética adquirida, por miles de años de domesticación, selección y mejoramiento, permite al maíz una amplia adaptación en los diversos tipos de climas y suelos. Debido a estos aspectos el maíz hoy es el cereal de mayor cobertura geográfica en el mundo, siendo cultivado desde el nivel del mar hasta los 4,000 metros de

_

¹ Productores, cuyo tamaño de finca son 10 ha. Promedio.

altitud y de regiones extremadamente áridas, con índice pluviométrico de 400 mm /año, hasta regiones tropicales con más de 1,500 mm/año (Fuentes, 2002).

El Maíz originado y evolucionado en la zona tropical como una planta de excelentes rendimientos, hoy día se cultiva hasta los 58° de latitud norte en Canadá y en Rusia y hasta los 40° de latitud sur en Argentina y Chile. La mayor parte del maíz es cultivado a altitudes medias, pero se cultiva también por debajo del nivel del mar en las planicies del Caspio y hasta los 3,800 msnm. En la cordillera de los Andes. Más aún, el cultivo continúa a expandirse a nuevas áreas y a nuevos ambientes.

Este es uno de los cultivos de mayor variabilidad genética y adaptabilidad ambiental como se mencionó anteriormente. El cultivo del maíz tiene una amplia distribución a través de diferentes zonas ecológicas de Guatemala, la distribución del cultivo está en función de la adaptación, condiciones climáticas (precipitación, altitud sobre el nivel del mar, temperatura, humedad relativa) y tipo de suelo (Fuentes, 2002).

Es el primer cereal en rendimiento de grano por hectárea y es el segundo, después del trigo, en producción total. El maíz es de gran importancia económica a nivel mundial ya sea como alimento humano, como alimento para el ganado o como fuente de un gran número de productos industriales. La diversidad de los ambientes bajo los cuales es cultivado el maíz es mucho mayor que la de cualquier otro cultivo.

El maíz tenía una superficie sembrada de aproximadamente 140 millones de hectáreas y una producción de 577 millones de toneladas anuales, para el año 2002, este cultivo representa hoy en día es parte importante de la dieta básica de muchos.

Según la FAO (1993), el maíz tiene tres usos posibles: alimento, forraje y materia prima para la industria. Como alimento se puede utilizar todo el grano, maduro o no, o bien puede ser utilizado en técnicas de molienda húmeda para obtener un número relativamente amplio de productos intermedios.

La producción de granos básicos en 1999 en Guatemala, generó una producción de aproximadamente 1,992, 850 TM. Esta producción involucra principalmente al maíz blanco: 83.1%, maíz amarillo: 0.8%, frijol negro: 10%, arroz: 2.6% y sorgo: 3.6% (MAGA/UPIE, 1999), valorada en unos 3,857millones de quetzales (MAGA 1999). Lo anterior representa aproximadamente el 10% del valor de toda la producción agrícola observada para ese año. Para el 2006 la producción de maíz fue de 1,375, 986.20 TM. De la cuál el 86.1% fue maíz blanco (MAGA, 2008).

La producción nacional de maíz se realiza a través de diferentes sistemas de producción que involucra épocas de siembra y sistemas de siembra que incluye la práctica de asociar e intercalar con otros cultivos. En relación a la época de siembra, esta varía dependiendo de la altitud de ubicación de la localidad. A nivel nacional el mayor porcentaje de siembra (>80%) se realiza bajo condiciones de temporal y varían según la ubicación de la localidad referente a la altitud sobre el nivel del mar (Fuentes, 2002).

Los agricultores, para este estudio como se menciono anteriormente son productores cuyo tamaño de área, son de 10 hectáreas promedio por agricultor, los cuales se asocian para realizar dicha producción.

Como sucede en Retalhuleu, Guatemala, lugar de la investigación y fase de campo, en donde se afilian en asociaciones para realizar la producción del grano.

Lo anterior lo realizan primordialmente para reducir costos de producción, trabajando con economías de escala.

1.2.1 Características Morfológicas, Taxonómicas y Bromatológicas del Maíz

La diversidad genética del maíz a nivel mundial es amplia. Hay más de 250 razas clasificadas y se encuentran alrededor de 10,000 entradas almacenadas en los principales bancos de germoplasma a nivel mundial. Mesoamérica es considerada centro de origen, donde se cultiva desde las épocas pre-colombinas. En Guatemala se han clasificado 13 razas de maíz, entre las cuáles se pueden mencionar: raza Olotón, San Marceño, Quiché, Naltel, entre otros. Dentro de la diversidad de maíz existen cultivares de menos de 1 m de altura, 8-9 hojas y una madurez de 60 días y otros con más de 5 m de altura, 40-42 hojas y una madurez de 340 días (Fuentes, 2002).

El maíz es una monocotiledónea perteneciente a la familia Gramínea, Tribu Maydae, con dos géneros: **Zea** (2n=20) y **Tripsacum** (2n=36). El género **Zea** tiene además de la especie Z. Mays (maíz común), cuatro especies conocidas como Teosintles (**Z. mexicana, Z. luxurians, Z. diploperennis y Z. perennis**). Es una gramínea anual, robusta, de 1-4 m de altura, determinada, normalmente con un solo tallo dominante, pero puede producir hijos fértiles, hojas alternas en ambos lados del tallo, pubescentes en parte superior y glabrosas en parte inferior, monoica con flores masculinas en espiga superior y flores femeninas en jilotes laterales; potándrica con la floración masculina ocurriendo normalmente 1-2 días antes que la femenina, polinización libre y cruzada con exceso de producción de polen: 25-30 mil granos por óvulo, granos en hileras encrustados en el olote, mazorca en su totalidad cubierta por hojas; grano cariopsis; metabolismo fotosintético C4 (Fuentes, 2002).

Cuadro No. 1 Clasificación botánica del Maíz

Reino	Vegetal
División	Tracheophyta
Subdivisión	Pteropsidae
Clase	Angiospermae
Subclase	Monocotiledoneae
Grupo	Glumiflora
Orden	Graminales
Familia	Poaceae o Gramínea
Tribu	Maydeae
Género	Zea
Especie	Mays
Variedades	Diversas

Fuente: ICTA, 2002

El grano de maíz es una fruta completa (cariópside) con una semilla. La semilla, que consiste fundamentalmente en el embrión y el endospermo, se encuentra incrustada en el pericarpio, que es parte del ovario. En promedio, el pericarpio ocupa 5.5%, el endospermo 82%, el embrión 11.5% y el pedicelo solamente 1% del total, respectivamente. El grano contiene alrededor de 1.5-1.6% de N, 0.3% de P, 0.35% de K, 0.03% de Ca, 0.12% de S, 0.17% de Mg, correspondiente con 75% de carbohidratos, 10% de proteína, 5% de lípidos y 10% de agua.

El endospermo que forma la mayor parte del grano 80-85% contiene en su superficie una capa llamada aleurona, cuyo espesor está formado por una célula, capa que es muy rica en proteínas y grasas. El contenido de proteína promedio en el maíz es de 8-10%, aproximadamente la mitad o las tres cuartas partes se hallan en la porción de gluten corneo. El germen constituye 10-15% del peso del grano, encierra la quinta parte del total de proteínas del grano entero. El maíz contiene cuatro tipos de proteínas: prolaminas, principalmente en forma de zeina, glubulina, glutelina y albúmina. La zeina aporta casi la mitad de la proteína total del grano entero y aproximadamente la mitad de las contenidas en el endospermo. Los hidratos de carbono equivalen a 73% del grano de maíz y está formado por hidratos de carbono bajo la forma de almidón, azúcar y fibra (celulosa). El almidón se encuentra principalmente en el endospermo, el azúcar en el germen y la fibra o celulosa en la cubierta (Fuentes, 2002).

1.2.2 Características de las deficiencias Principales

Nitrógeno (N): Los síntomas se ven más reflejados en aquellos órganos fotosintéticos, como hojas, que aparecen con coloraciones amarillentas sobre los ápices y se van extendiendo a lo largo de todo el nervio. Las mazorcas aparecen sin granos en las puntas.

Fósforo (P): El fósforo da vigor a las raíces. Su déficit afecta a la fecundación y el grano no se desarrolla bien.

Potasio (K): La deficiencia de potasio hace a la planta muy sensible a ataques de hongos y su porte es débil, ya que la raíz se ve muy afectada. Las mazorcas no granan en las puntas.

1.2.3 Función de Producción

La cantidad de un bien que se produce en un proceso productivo determinado, depende de la cantidad y de la forma en que se combinan los insumos. La relación que describe la forma en que el producto depende de los insumos es lo que se llama Función de Producción (Blanco, 1974).

Los matemáticos definen una "función" como la regla para asignar a cada valor de un grupo de variables "X" (el dominio de la función) un valor único de otro grupo de variables "Y" (el rango de la función) (Arias, 2007).

Una función de producción representa la relación existente entre insumo y producto, que describe la tasa a que los recursos son transformados por medio de la ley de los retornos marginales decrecientes.

Es por ello que para cada nivel de insumo usado, la función asigna un nivel único de producción. Cuando el nivel de insumo es cero, la producción podría ser cero, o en algunos casos, existiría una producción positiva con cero insumos.

Los tipos de insumos son: "insumo variable" éste es el insumo que el gerente de la finca puede controlar o aquel al cual se puede alterar su nivel. Esto implica que el agricultor tiene el tiempo suficiente, para alterar la cantidad aplicada y el "insumo fijo" es aquel insumo que por alguna razón el agricultor no tiene control sobre la cantidad disponible.

1.2.3.1 Ley de los Retornos Decrecientes. Establece que a medida que las unidades de insumos variables son agregados a unidades de uno o más insumos fijos, después de un cierto punto, cada unidad incremental del insumo variable produce menos y menos producto adicional. La palabra clave de esta ley es "adicional" esta ley se refiere a la tasa de cambio en la pendiente de la función de producción.

Aunque existen diversas funciones para determinar las respuestas de distintas variables, se determinará la más adecuada a partir de análisis estadístico, comparando los paramentos estadísticos en cada modelo planteado; como también la ley de los retornos marginales decrecientes conocida como ley Mitscherlich, concurrentemente la ley mínimo o Ley Liebig.

1.3 JUSTIFICACIÓN

Una de las principales razones por las cuales se llevó acabo dicho estudio es para conocer la dosis técnica adecuada, de los principales macro elementos (N, P, K), para maximizar las utilidades económicas, ya que los fertilizantes son el mayor costo para la producción de maíz en la zona (Anexo 3).

El actual crecimiento demográfico en Retalhuleu, como en toda Guatemala es bien marcado por lo que la demanda de alimentos como el maíz se encuentra en aumento y las tendencia al alza de petróleo, tiene dos implicaciones importantes, a un aumento en el precio de insumos agrícolas en especial los fertilizantes químicos, así mismo el incremento de demanda de maíz a causa de la creciente demanda de biocombustibles conlleva a una necesidad de incrementar la producción y productividad y una de las formas de ejecutarlo es a través de un uso adecuado de fertilizantes.

Una función de producción provee información concerniente a la cantidad de producto que se espera producir, cuando determinados insumos se combinan de una manera especifica. Siendo que existen diferentes formas de producción, una para cada forma en particular de combinación de insumos (Blanco, 1974).

Es por ello que lo anterior podrá determinar la cantidad más correcta para maximizar las ganancias, de acuerdo al precio del producto e insumos en el mercado para producir con un óptimo económico, además poder predecir aproximadamente la producción de acuerdo a la cantidad de insumo utilizado.

Dicho estudio es de mucha importancia, no sólo para los productores de la zona, sino también es una base para otros productores que deseen maximizar sus utilidades económicas y poder predecir aproximadamente la producción.

1.4 LÍMITES DEL ESTUDIO

El estudio está limitado a las condiciones del lugar (edáfico y climático), la época (fecha), en la cuál se realizó la investigación y características de manejo del cultivo (control de plagas), así mismo al híbrido de maíz utilizado para la investigación.

Adicionalmente se limita a productores, cuyo tamaño de finca son 10 ha. Promedio, y realizan la producción en una forma asociada.

1.5 OBJETIVOS

1.5.1 Objetivo General:

Determinar una Función de Producción (modelo) para la producción de maíz (**Zea** *mays*) a partir de Nitrógeno, Fósforo y Potasio.

1.5.2 Objetivos Específicos:

- Realizar un experimento agrícola de fertilización con los tres principales macro nutrientes, Nitrógeno, Fósforo (P₂O₅) y Potasio (K₂O).
- Definir la relación de Nitrógeno (N), Fósforo (P₂O₅), potasio (K₂O) para la producción de maíz.
- Estimar estadísticamente la cantidad adecuada de Nitrógeno (N), Fósforo (P₂O₅) y potasio (K₂O) para la producción de maíz.
- Establecer la cantidad para maximizar la producción de maíz a partir de la aportación de Nitrógeno (N), Fósforo (P₂O₅) y potasio (K₂O).
- Determinar el óptimo económico, para la producción de maíz a partir de la aplicación de Nitrógeno (N), Fósforo (P₂O₅) y potasio (K₂O).

2. METODOLOGÍA

2.1 LOCALIZACIÓN Y CARÁCTERISTICAS

Se realizó una caracterización del lugar determinando el marco referencial de la investigación, información climática y edáfica detallando lo siguiente:

Localización: El experimento de campo (ensayo) se llevó acabo en Retalhuleu, Guatemala.

Zona de vida: Bosque muy húmedo subtropical cálido, bmh-S-(c), Según clasificación Holgridge (Anexo 2).

Temperatura Promedio: 27. 96 °C.

Precipitación Pluvial: 3,019.92 mm. Promedio al anual (Anexo 2).

Humedad Relativa: 75% Promedio.

Orden de suelo: El orden de suelo en donde se realizó la investigación es Mollisol, este suelo es medianamente evolucionado, de perfil ABC y AC, con colores oscuros y texturas predominantemente franco arenoso, y complejos saturados se localizan en el cuerpo y parte distal de los abanicos aluvio-coluviales (Anexo 2).

pH: 5.95 a 6.55

Altitud: 450 m.s.n.m.

2.2 DESCRIPCIÓN DE LA INVESTIGACIÓN

El proyecto se divide en una fase de campo y una de análisis estadístico de los datos, la fase de campo comprende un experimento agrícola, para que determinar los datos en donde se muestre y conozca la relación técnica o transformación de insumo a producto, y a partir de dichos datos, realizar una función de producción en maíz (**Zea mays**), el hibrido utilizado fue "HS-3G" y la investigación de campo fue diseñada y manejada por el autor.

2.2.1 Tratamientos y Variable Respuesta.

Las variables independientes (insumos variables), que se estudiaron fueron: nivel de nitrógeno (N), fósforo (P_2O_5) y potasio (K_2O), en donde se evaluaron las siguientes dosis: N: $n_1 = 50$ kg/ha y $n_2 = 150$ kg/ha; P: $p_1 = 0$ kg P_2O_5 /ha y $p_2 = 100$ kg P_2O_5 /ha; K: $k_1 = O$ kg K_2O /ha y $k_2 = 100$ kg K_2O /ha. Adicionalmente dos tratamientos que fueron: Tratamiento 9: 0-0-0 kg de N, P_2O_5 y K_2O /ha respectivamente y tratamientos 10: 0-100-100 kg de N, P_2O_5 y K_2O /ha respectivamente, como testigos para un total de diez tratamientos (Anexos 1 y 15).

Las dosis para los tratamiento, se basaron en las cantidades utilizadas por los productores de la zona, al igual que la selección del hibrido. La variable respuesta, analizada fue rendimiento de maíz en qq/ha.

Las dimensiónales de la variable respuesta (qq/ha), y los tratamientos efectuados (Kg/ha), fueron definidas de esta manera y extrapolados a dichas dimensiónales para una mejor comprensión de los tratamientos y el resultado mismo (Anexo 15).

2.2.2 Diseño Experimental

El diseño experimental utilizado fue bloques al azar o bloques completamente al azar (BCA), dicho experimento fue realizado al en campo, aunque no existía una gradiante definida, se considero ese tipo de diseño por ser el más idóneo para evaluaciones en campo libre, para reducir efectos de fertilidad del suelo, borda u otro efecto.

Se realizó con 4 repeticiones, se utilizó dicha cantidad de repeticiones tomando, el criterio general para investigaciones agrícolas y reducir el error, dando un total de 40 parcelas.

El tamaño de la unidad experimental (parcelas) fue de 100 m². El área total del experimento fue de 5,824 Mts² (0.5824 ha.) y la parcela neta, descontando las bordas fue de 4,000 m² (0.40 ha.), el distanciamiento de siembra fue de 20x 40 cm. Para un total de 1,250 plantas por tratamiento, así mismo se dejó un borde 10 y 6 m. Para evitar efecto de borda, dicho margen fue para toda la unidad experimental (Anexo 1).

Las aplicaciones se realizaron en tres fertilizaciones la primera se ejecutó a los 10 días después de la siembra, la segunda se efectuó a los 30 días y la última a los 60 días.

Se realizó un análisis de suelo, pero no se tomó en cuenta la cantidad que se encontraba en el mismo para las dosis evaluadas, debido a que los diferentes tratamientos evaluados, tienen como base la dosis aplicada por los productores en la zona, además se contemplaron tratamientos con "0" Kg (dosis) en los diferentes nutrientes estudiados como testigos.

Además no se sabe, si la cantidad que se encontraba presente en el suelo, está totalmente disponible y sí la planta la puede asimilar adecuadamente, lo presente en el medio, por tal razón el análisis de suelos únicamente sirve como referencia.

2.3 MANEJO DE LA INVESTIGACIÓN (MATERIAL Y EQUIPO UTILIZADO)

2.3.1 Preparación de suelo

Previo a la siembra se adecuó el suelo, esto consistió en una serie de labores mecánicas para roturar y desmenuzar el suelo y subsuelo. Esto con el objeto de facilitar el enraizamiento del cultivo, aprovechar la humedad, para luego iniciar las labores de surqueo y siembra.

2.3.2 Siembra

Esta fue realizada de forma mecanizada (sembradora), el 31 de Enero 2008, el distanciamiento utilizado fue de 20 x 40 cm. (25 surcos y 50 plantas por surco en cada tratamiento), para un total de 1,250 plantas por tratamiento, la profundidad de siembra fue en promedio 3 cm. 13 días posterior a la siembra, se efectuó una resiembra ésta fue menor de 5%, la semilla utilizada fue hibrido "HS-3G", se utilizó aproximadamente 1.50 bolsas/ha.

Este hibrido es un maíz blanco, las características por las cuales los productores utilizan este hibrido es debido a: es tolerante a sequía, tolerancia a la pudrición de la mazorca, buena calidad de grano para la industria como llenado de mazorca y puede utilizarse también para la producción de elote, su utilización es de 0 a 1,500 m.s.n.m.

2.3.3 Fertilización

Todas las parcelas se fertilizaron de acuerdo a la descripción de cada uno de los tratamientos antes mencionados.

Se realizaron en tres fertilizaciones, la primera a los 10 días después de la siembra, la segunda se efectuó a los 30 días y la ultima 60 días.

Los fertilizantes utilizados fueron: Urea (46-0-0), Nitrato de potasio (13-0-44) Fosfato diamónico DAP (18-46-0), Superfosfato triple (0-46-0), Muriato de potasio (0-0-61).

2.3.4 Control de plagas (aplicación Insecticidas)

Esta actividad se realizó al momento de la siembra, para proteger al cultivo de las plagas del suelo, principalmente la gallina ciega *(Phylophaga spp.)* el insecticida utilizado fue Semevin 35 FS (Thiodicarb), la dosis manejada fue 1 l/qq de semilla.

Durante su desarrollo, antes de la floración para combatir la plaga foliar, se utilizó Karate Zeon CS (Lambdacialotrina) la plaga que se combatió fue el cogollero (*Spodoptera frugiperda*), se utilizó a una dosis de 0.15 - 0.20 l/ha.

2.3.5 Riego

El riego realizado, fue por medio de un sistema de aspersión móvil, esto en las primeras etapas del cultivo, luego al empezar las lluvias se suspendió el mismo.

2.3.6 Control de Malezas

Se utilizó diferentes tipos de herbicidas, de acuerdo al tipo y desarrollo de la maleza, los más utilizado fue Gesaprim 80 WP (Tiazafluron 40%+Karbutiliato 40%), Gramoxone (Dicloruro de Paraquat), y Hedonal 40 SL (Ácido acético), las aplicaciones se ejecutaron con bombas de mochila. Además del control de malezas dentro del cultivo, se realizaron despejes de rondas, los mismos fueron aplicados al momento de realizadas las aplicaciones dentro del cultivo. Así también se efectúo en forma manual arrancando la maleza (Arranque) y cortándola por medio de machetes.

2.3.7 **Dobla**

Se realizó doblando la planta a una altura promedio de 50-60 cm. del suelo, lo anterior debido a que las mazorcas necesitan perder humedad y al realizar dicha actividad se acelera su secado.

2.3.8 Cosecha

La recolección de las mazorcas de maíz, se efectuó de forma manual, para luego ser desgranada en forma mecanizada, el cuál consistió en un dispositivo de trilla que separó el grano de la mazorca, este mismo tienen dispositivos de limpieza, para luego caer a un tanque o depósito donde va el grano de maíz limpio, dichos granos se volvieron a secar para eliminar la humedad restante.

El rendimiento se determinó cortando el maíz (mazorcas), de cada uno de los tratamientos por separado y luego desgranándolo y pensándolo de igual manera, para después extrapolar los resultados a las áreas mencionadas en la metodología.

Cuadro No.2 Cronología del Cultivo de Maíz, HS-3G (Investigación Campo)

DESCRIPCIÓN	TIEMPO (días después de la siembra)	OBSERVACIÓN
Siembra	0 días	31 de Enero 2008.
Floración	43-46 días	
Elote (estado lechoso)	59-69 días	
Cosecha	91 días	30 de abril 2008.

2.4 ANÁLISIS ESTADÍSTICO Y ECONÓMICO

2.4.1 Selección de la Función

Una función de producción representa la relación existente entre insumo y producto, en éste caso fertilizantes (Kg/ha) y Maíz (qq/ha) respectivamente, en donde se describe la tasa a que esto recursos son transformados, por medio de la ley de los retornos marginales decrecientes. Por medio de estadística inferencial, la cuál permitió trabajar y comprender la relación entre variables independientes con la pendiente, mediante ecuaciones, derivadas de análisis de regresión múltiple en cada modelo planteado.

El análisis estadístico, se realizó con el programa de aplicación para manejar hojas de cálculos "Microsoft Office Excel". Por medio de un análisis de correlación y varianza para los diferentes niveles de N, P₂O₅, K₂O en los distintas funciones propuestas, con ello se determinó si existe o no relación de dependencia entre las variables propuestas en cada modelo. Es decir, determinando los coeficientes de cada una de las variables independientes en cada modelo propuesto, para luego encontrar el idóneo, y desarrollar la función.

Los modelos planteados de regresión lineal múltiple con p variables predictoras y basado en n observaciones se expresaron en la forma:

$$y_i = \beta_o + \beta_1 x_{1i} + \beta_2 x_{2i} +\beta_p x_{pi} + e_i$$

Para $i = 1, 2, \dots$ n. Escribiendo el modelo para cada una de las observaciones.

Los parámetros evaluados en análisis estadístico de cada modelo fue: la estadística de regresión, en donde se tomó en cuenta el coeficiente de correlación múltiple, el coeficiente de determinación ($R^{^2}$), como ($R^{^2}$) ajustado y error típico.

En lo referente a análisis de varianza, fue evaluado: Suma de cuadrados, valor de distribución F, valor crítico de F, coeficientes, error típico, T estadístico, y análisis de residuales (residuos estándares) y los residuales se evaluaron con el método durbin watson.

2.5 MAXIMIZACIÓN DE PRODUCCIÓN Y ECONÓMICA

Una vez seleccionada la función, correspondió establecer la cantidad para maximizar la producción de maíz a partir de la aportación de los nutrientes estudiados, ésta se realizó haciendo una derivación parcial de la misma, igualándola a cero para obtener la dosis máxima de producción física.

Posteriormente se igualó a la relación de precios para obtener la dosis económica y determinar el óptimo económico, para la producción de maíz a partir de la aportación de Nitrógeno, Fósforo y potasio.

La resolución de las ecuaciones resultantes de las derivadas parciales en los sistemas de ecuaciones planteados, se realizó con el programa "Matemáticas de Microsoft".

2.5.1 Determinación de Precios de Insumos y Producto

En el caso de los insumos se tomó los precios de mercado al momento de compra, en Retalhuleu, Guatemala, para luego determinar los precios por nutriente por medio de un ponderado de la utilización en el experimento de campo y el porcentaje de cada nutriente con respecto a los fertilizantes utilizados.

Referente a los precios del producto se determinó por medio de un promedio de precios entre los contratos de entrega que realizan los días antes de la siembra y el precio de venta del restante de la cosecha que no se encuentra dentro del contrato, ambos precios en la misma zona de mercado.

3. RESULTADOS Y DISCUSIÓN

3.1 ANÁLISIS DE LOS MODELOS

Por medio de los rendimientos obtenidos en cada uno de los tratamientos del experimento de campo, se plantearon distintas funciones (modelos) relacionando las variables independientes (nutrientes) con la variable dependiente (rendimiento), y se seleccionó el modelo adecuado, de acuerdo a los criterios mencionados en la metodología.

3.1.1 Modelo No. 1

Ésta ecuación aunque presenta parámetros aceptables en lo referente a estadística de regresión, pero sus coeficientes presentan colinealidad, por lo tanto, ésta situación muestra como dos variables explicativas, están fuertemente interrelacionadas en este caso X₄ (Nivel de N, P₂O₅ y K₂O) y X₅ (N₂) por tal razón, resulta difícil medir sus efectos individuales sobre la variable endógena.

Éste efecto puede crear estimados inexactos de los coeficientes de regresión, lo que causa un aumento en los errores estándar, disminuyendo las pruebas t parciales para los coeficientes mismos, y da valores de no significativos falsos. Se puede afirmar que la presencia de multicolinealidad en este modelo, puede causar toda clase de problemas con los análisis posteriores, ya que se degrada la predictibilidad del mismo, por lo tanto se descartó (Anexo 4).

3.1.2 Modelo No. 2, No. 3, No. 4, No. 5, No. 6 y No. 7

Las Funciones No. 2, No. 3, No.4, No. 5 No.6 y No7, tienen valores en estadística de regresión admisible, y un error típico aceptable, pero presentan multicolinealidad en diferentes variables planteadas, además en el caso del modelo No. 2, 3 y 7, en donde la variable X₂ (Nivel de P₂O₅), X₃ (Nivel de K₂O), y X₃ (Nivel de K₂O) respectivamente, muestran que no existe correlación con estas variables, dando un valor para el coeficiente de 0. Así también estas variables no presentan valores en los elementos del análisis de varianza, lo que también causa toda clase de problemas con los análisis posteriores, por tal motivo se descartan estas funciones (Anexos 5, 6, 7, 8, 9 y 10).

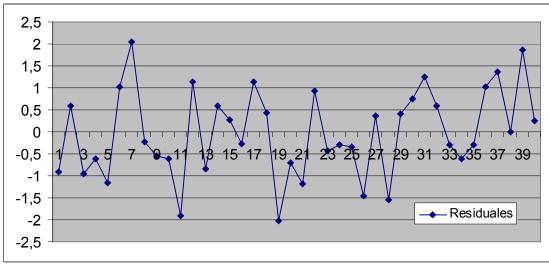
3.1.3 Modelo No. 8

Éste modelo es relativamente bueno, ya que presenta parámetros razonables en lo concierne a la estadística de regresión en la cual presenta un coeficiente de correlación y determinación múltiple aceptables, así mismos el análisis de varianza en donde se muestra un valor F manifiesta la significancía del modelo, un error típico, y estadístico "t" permisibles. Además los coeficientes de las variables no presentan ningún problema y la variable cuadrática demuestra la ley de los retornos marginales decrecientes, así mismo se analizaron los residuales del modelo método Durbin Watson, y se encontraba aceptable, presentado solo un valor atípico (Anexos 11 y 13)

Pero no fue aceptado, éste modelo debido a que la función determinada sobre presente máximos relativo, asociados únicamente a un nutriente el cuál es nitrógeno, por lo tanto se descarto dicho modelo.

Al igual que el modelo No. 8, se efectuaron otras funciones sustituyendo N por P₂O₅ y K₂O elevados al cuadro, pero presentaron las mismas dificultades de los modelos anteriores.

3.1.4 Modelo No. 9


Se seleccionó este modelo, debido a que tiene una estadística de regresión en la cual presenta un coeficiente de correlación y determinación múltiple aceptables, así mismos el análisis de varianza en donde se muestra un valor F manifiesta la significancía del modelo, un error típico, y estadístico "t" en general es estadísticamente significativo el modelo. Además los coeficientes de las variables no presentan ningún problema y las variables cuadráticas demuestran la ley de los retornos marginales decrecientes.

Cuadro No. 3, Análisis de regresión del modelo seleccionado de la Función de Producción en Maíz.

i i oduccion chi maiz.				
Estadísticas de la red	aresión			
Coeficiente de correlación múltiple	0,881613558			
Coeficiente de determinación R^2	0,777242465			
R^2 ajustado	0,728514254			
E rror típico	9,523516209			
Observaciones	40	1		
ANÁLISIS DE VARIANZA				
	Grados de libertad	S uma de cuadrados	Promedio de los cuadrados	F
R eg resión	7	10126,7187	1446,6741	15,95056443
R es iduos	32	2902,315552	90,69736099	
Total	39	13029,03425		
	Coeficientes	E rror típico	E s tadís tico t	Probabilidad
Intercepción	53,54285859	189812531,2	2,82083E-07	0,999999779
Variable X 1	0,571807409	0,117655955	4,859995481	2,98391E-05
Variable X 2	6,38331E+13	1,20412E+14	0,530121971	0,599686884
Variable X 3	-1,32758E+14	1,22746E+14	-1,081565537	0,287529239
Variable X 4	-0,002415375	0,000697803	-3,461398079	0,001545678
Variable X 5	-6,38331E+11	1,20412E+12	-0,530121971	0,599686884
Variable X 6	1,32758E+12	1,22746E+12	1,081565537	0,287529239
Variable X 7	-2,77143E -05	4,33186E-06	-6,397788102	3,4486E-07

Para ésta función se analizaron los residuales, por medio de la prueba de Durbin Watson, para detectar presencia de correlación en los residuales del análisis de regresión, esta prueba dice que, sí el estadístico de la regresión efectuada está distribuido en forma asintóticamente normal con media cero y varianza unitaria y además se encuentra entre (-1,96, +1,96), con un 95% de confianza se puede rechazar la hipótesis nula de que no hay correlación de primer orden (positiva o negativa).

Gráfico No. 1 Residuos Estándares del modelo No. 9, para la función de producción en Maíz.

Para el presente modelo, solo dos valores se encuentran fuera de lo que asevera el método Durbin Watson, dichos valor son atípicos en cuarenta observaciones, por lo tanto, no es significativo, además este valor pudo ser por efecto de borda ya que uno de ellos es el tratamiento No.7 de la repetición 1 (Anexo1) y ese se encuentra al borde del ensayo, el otro valor pudo haber sido por característica de ese suelo en particular. Así también en el gráfico No.1 (Anexo 14), se puede observar que no existe una correlación entre las variables graficadas, y tiene una media de cero y una varianza unitaria, esto confirma que el modelo seleccionado es el más indicado.

Así mismo se analizó el "t" estadístico, en donde únicamente dos variables del modelo no presentan significancia estadística, que son las variables P_2O_5 y $(P_2O_5)^2$ lo cuál es solamente para un elemento, pero si presenta significancia estadística cuando se relaciona con las otros nutrientes, como se muestra en la variable 7 (N* P_2O_5 * K_2O) por lo tanto, el modelo como tal muestra significancia estadística.

3.1.4.1 La Función Determinada:

 $Y=53,5428585925133 + 0,571807409057201 \ N + 63833076318344 \ P_2O_5 -132757982035734 \ K_2O$ - 0,00241537466493708 N^2 - 638330763183,438 $(P_2O_5)^2$ +1327579820357,34 $(K_2O)^2$ -0,0000277142929625665 NPK

En donde:

Y = Rendimiento de Maíz en quintales por hectárea.

53,5428585925133 = Intercepto

N = Kilogramos de Nitrógeno por hectárea.

 P_2O_5 = Kilogramos de Fósforo en forma de P_2O_5 por hectárea.

 K_2O = Kilogramos de Potasio en la forma K_2O por hectárea.

 N^2 = Kilogramos de Nitrógeno al cuadrado, por hectárea.

 $(P_2O_5)^2$ = Kilogramos de Fósforo al cuadrado, por hectárea.

 $(K_2O)^2$ = Kilogramos de Potasio al cuadrado, por hectárea.

NPK = Kilogramos de Nitrógeno, Fósforo y Potasio por hectárea

0,571807409057201; 63833076318344; -132757982035734; -0,00241537466493708; -638330763183,438; +1327579820357,34; -0,0000277142929625665 = Son los Coeficientes para cada variable de N a NPK correspondientemente.

3.2 OPTIMA PRODUCCIÓN FÍSICA

El producto físico marginal (PFM), es el cambio en producto (quintales de Maíz) asociado con un cambio incremental en el uso insumo (nutrientes). El aumento de forma incremental en el uso del fertilizante es generalmente de una unidad, así que el PFM es el cambio de quintales de maíz, asociado con un aumento de kilogramos de nutrientes (fertilizantes).

Se procedió a resolver las ecuaciones encontradas, en donde se determinó los niveles de Nitrógeno (N), Fósforo (P_2O_5), y potasio (K_2O), en donde la función de producción llega a su máximo, éste valor se determinó de forma algebraica, estableciendo el punto donde la función logra su máximo valor, esto ocurre cuando el producto físico marginal (Δ_Y/Δ_X) que representa la pendiente o la tasa de cambio de la función de producción de Maíz es igual a "0", ya que el producto marginal nutriente es 0 en el punto de maximización de quintales de maíz y negativo a niveles mayores entonces, la primera derivada parcial de la función de producción es:

$$\delta Y / \delta N = 0$$
 $\delta Y / \delta P_2 O_5 = 0$ $\delta Y / \delta K_2 O = 0$

Son las respectivas derivadas de la función de producción con relación a Nitrógeno, Fósforo y Potasio.

El producto físico marginal, con respecto al Nitrógeno (N), Fósforo (P_2O_5) y potasio (K_2O), igualado a "0", por lo tanto:

 $\delta Y / \delta N = (0.571807409057201 - 0.00483074932987416(N) - 0.0000277142929625665(P_2O_5)(K_2O)) = 0$

 $\delta Y/\delta P_2 O_5 = (63833076318344-1276661526366.88 (P_2 O_5) -0.0000277142929625665 (N) (K_2 O)) = 0$

$$\delta Y/\delta K_2O = (-132757982035734 + 2655159640714.68 (K_2O) - 0.0000277142929625665(N) (P_2O_5)) = 0$$

Para maximizar la producción se debe aplicar 50.98 Kg. De N, 100 Kg. P₂O₅, y 100 kg. K₂O para una producción de 101.86 qq/ha. Quedando significativamente demostrado.

3.3 OPTIMA PRODUCCIÓN ECONÓMICA

La óptima producción se obtuvo igualando los costos marginales (precio del insumo, que es el costo de producir una unidad adicional) con el valor del producto físico marginal (VPM), que es el PFM multiplicado con el precio del producto.

$$(\delta Y / \delta N) * P_v = VPM_N, (\delta Y / \delta P_2O_5)*Py = VPM_{P2O_5} y (\delta Y / \delta K_2O)*Py = VPM_{K2O_5}$$

Son los productos físicos marginales, con respecto al Nitrógeno (N), Fósforo (P₂O₅), y a potasio (K₂O), igualando con el costo marginal (precio del insumo).

VPM $_{N}$ = (82.912074313294145 - 0.7004586528317532 (N) -0.0040185724795721425 (P₂O₅) (K₂O)) = 15.33

VPM $_{P2O5}$ = (9255796066159880 - 185115921323197.6 (P_2O_5) - 0.0040185724795721425 (N) (K_2O)) = 30.66

 $VPM_{K2O} = (-19249907395181430 + 384998147903628.6 (K_2O) -0.0040185724795721425 (N) (P_2O_5)) = 29.52$

Para optimizar la producción del punto de vista económico se debe aplicar 23.2 Kg. De N, 100 Kg. P₂O₅, y 100 kg. K₂O para una producción es de 97.57 qq/ha. Quedando significativamente demostrado.

Se evaluó el impacto del precio de los insumos para la producción y utilidad máxima, haciendo la relación de precio del insumo con el precio del producto.

 \dot{v}/py ; \dot{v} es el precio del insumo y py es el precio del producto en donde

 $N \approx 15.33/145 = 0.105724$

 $P_2O_5 \approx 30.66/145 = 0.21148$

 $K_2O \approx 20.52/145 = 0.203586$

El nutriente que tiene un menor impacto de acuerdo al precio del insumo y la producción de maíz es el nitrógeno.

La relación de Nitrógeno, Fósforo y Potasio, que se definió por medio de la función y representa la ley de los retornos marginales decrecientes, muestra que altas cantidades de nitrógeno, fósforo y potasio, da como resultado una reducción de producción. Esto por los tipos de fertilizante utilizado y el suelo, porqué las altas concentraciones de nitrógeno en forma de nitrato (NO3⁻) es antagónico con el fósforo (HPO4 y H2PO4), y parte del fertilizante utilizado fue en forma de nitrato y los Mollisol presentan un alto contenido de materia orgánica.

4. CONCLUSIONES Y RECOMENDACIONES

4.1 CONCLUSIONES

- Una función cuadrática con las variables N, P_2O_5 , K_2O , N^2 , $(P_2O_5)^2$, $(K_2O)^2$, NPK, fue el modelo que expresó la relación de los nutrientes y la que mejor se ajustó a la evaluación estadística de los datos de campo.
- El diseño de investigación seleccionado redujo el error experimental, como lo expone el método de Durbin Watson, mostrando únicamente dos valores atípicos en donde uno de los valores pudo ser efecto de borda y el otro por característica especificas del suelo en donde se encontraba dicho tratamiento.
- Las cantidad para maximizar desde el punto de vista físico son: 50.98 Kg. de N/ha., 100 Kg. P₂O₅/ha., y 100 kg. K₂O /ha. para una producción de 101.86 qq/ha. y para obtener el máximo beneficio económico son: 23.2 Kg. de N/ha., 100 Kg. P₂O₅/ha., y 100 kg. K₂O /ha., para una producción de 97.57 qq/ha.
- Los precios de fósforo y potasio son relativamente bajos por lo tanto las cantidades de estos insumos para el máximo de producción y óptimo económico son similares, con excepción del nitrógeno que muestra una diferencia entre el máximo de producción.
- El modelo seleccionado infiere una conducta racional de los agricultores, es decir cuando el precio del producto aumenta tienden a usar más insumos, haciendo mayor referencia en el nutriente que presenta cantidades distintas para el máximo de producción y óptimo económico.

4.2 RECOMENDACIONES

- La introducción de una nueva variedad o híbrido, debe ser condicionada con una función de producción que permita determinar el valor para el óptimo económico.
- En futuras investigaciones evaluar otros fertilizantes para analizar el antagonismo del nitrógeno y el fósforo en dicho suelo.
- Implantar funciones de producción más focalizadas para que tengan una mayor representatividad de las condiciones locales y utilizar los resultados para experimentos similares en otras localidades.

5. BIBLIOGRAFÍA

Arias, F. 2007. Economía de la Producción. Guía de Estudio. Valle del Yeguare, Universidad Zamorano. Honduras.

BANGUAT, (Banco de Guatemala). 2008. Estadísticas de producción de Granos Básicos. Base de datos (En línea). Guatemala. Guatemala. Consultado el 10 de mayo. 2008. Disponible en www.banguat.gob.gt

Blanco, R. 1974. Economía Agrícola. Guía de clases para Estudiantes de Ciencias Agronómicas. Departamento de Estudios Agrosocioeconómicos. Universidad del Salvador. El Salvador.

FAO (Organización de las Naciones Unidas para la agricultura y la Alimentación). 1993. El maíz en la nutrición humana. FAO: Alimentación y nutrición. Roma, Italia. 167 p.

FAO; MAGA; PEDN (Programa de Emergencia para Desastres Naturales). 2003. Atlas de Guatemala. Guatemala. 1 disco compacto.

Fuente, J. 1999. El suelo y los fertilizantes. Quinta edición. Ministerio de agricultura pesca y alimentación. España. 352 P.

Fuentes, R. 2002. El Cultivo de Maíz en Guatemala. Guía para su manejo Agronómico. Base de datos (En línea). Guatemala, ICTA. Consultado 7 de mar. 2008. Disponible en http://www.icta.gob.gt/

Hernández, R. 1992. Efecto de los Fertilizantes Nitrogenados Sintéticos y Naturales en Maíz (*Zea Mays L.*). Tesis Lic. Ing. Agr. Zamorano. Honduras. 51p.

Levin, R. y Rubin, D. 2004. Estadística para administración y economía. Séptima edición. Editorial Person educación. México D. F. México. 928 P.

MAGA, (Ministerio de Agricultura, Ganadería y alimentación). 2008. Estadísticas Agropecuarias. (En línea). Guatemala. Consultado el 14 de May.2008. Disponible en http://portal.maga.gob.gt/portal/page/portal/main2/infoagro

Mendenhall, W. 1990. Estadística para administradores. Segunda edición. Grupo editorial iberoamérica. México D. F. México. 817 P.

O'NEIL, P. 2004. Matemáticas avanzadas para ingeniería. Editorial Thomson. México D. F. México. 817 P.

Secretaría de educación pública (SEP). 2000. Manual para educación agropecuaria. Maíz. Editorial trillas. México D. F. 56 P.

Sitún, M. 2002. Investigación Agrícola. Guía de Estudio. Escuela Nacional Central de Agricultura. Primera edición. Guatemala. 137p.

SIMMONS, G. 1993. Ecuaciones diferenciales. Editorial MC Graw Hill. España. 850 P.

STEWART, J. Cálculo multivariable. Editorial Thomson. México. 790 P.

6. ANEXOS

Anexo 1. Croquis de la Investigación

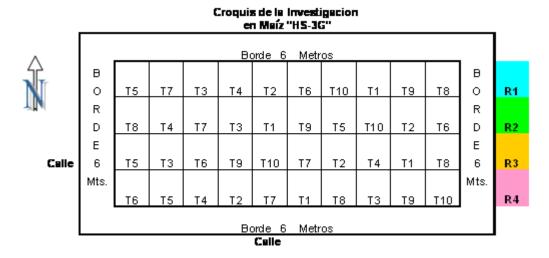


Figura No. 1 Croquis de la Investigación Fuente: Autor

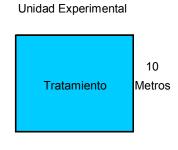


Figura No. 2 Unidad Experimental Fuente: Autor.

10 Metros

Anexo 2. Mapas de Suelo, Zona de Vida y Precipitación Pluvial de Guatemala.

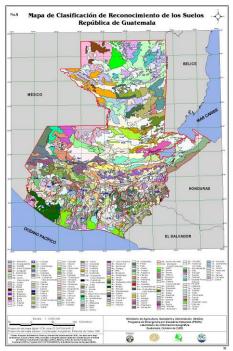


Figura No.3, Mapa de Suelos de Guatemala Fuente: FAO, MAGA, y PEDN

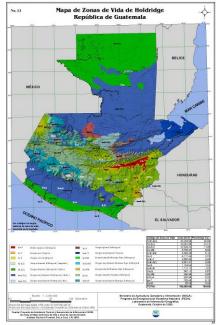


Figura No. 4, Mapa de Zonas de vida de Guatemala Fuente: FAO, MAGA, y PEDN

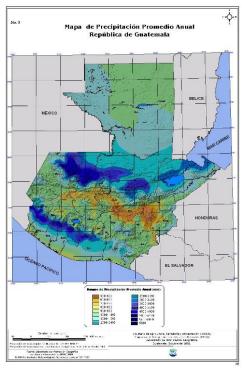
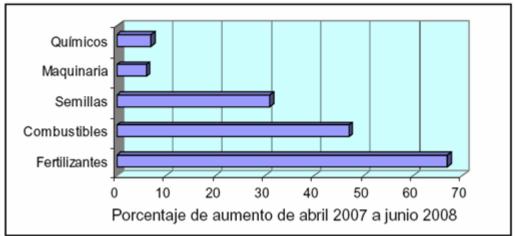
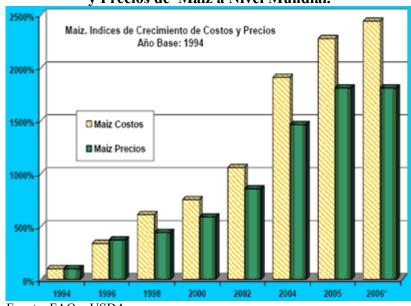



Figura No. 5, Mapa de Precipitación Pluvial de Guatemala. Fuente: FAO, MAGA, y PEDN.


Anexo 3. Gráficos de Distribución y Crecimiento de Costos a Nivel Mundial en Maíz.

No. 2 Distribución de Costos de Producción de Maíz a Nivel Mundial

Fuente: USDA y Wall Street Journal.

No. 3 Crecimiento de Costos y Precios de Maíz a Nivel Mundial.

Fuente: FAO y USDA.

Anexo 4. Cuadro del modelo No. 1, para la determinación de la función de producción en Maíz (N, P, K, NPK, N²).

Resumen								
Estadísticas de la reg	gresión							
Coeficiente de correlación múltiple	0,876533382							
Coeficiente de determinación R^2	0,768310769							
R^2 ajustado	0,734238824							
Error típico	9,422574461							
Observaciones	40							
ANÁLISIS DE VARIANZA								
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F			
Regresión	5	10010,34733	2002,069466	22,54965937	6,46731E-10			
Residuos	34	3018,686922	88,78490947					
Total	39	13029,03425						
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	Superior 95,0%
Intercepción	51,26695197	4,103476247	12,49354179	2,92481E-14	42,92768494	59,606219	42,92768494	59,606219
Variable X 1	0,550187295	0,114291764	4,813883996	2,99011E-05	0,317918486	0,782456104	0,317918486	0,782456104
Variable X 2	0,182789409	0,033599792	5,440194596	4,60288E-06	0,114506416	0,251072402	0,114506416	0,251072402
Variable X 3	0,233303695	0,033599792	6,943605247	5,27038E-08	0,165020701	0,301586688	0,165020701	0,301586688
Variable X 4	-2,90193E-05	4,28594E-06	-6,770816861	8,74911E-08	-3,77294E-05	-2,03092E-05	-3,77294E-05	-2,03092E-0
Variable X 5	-0,002173065	0,000666277	-3,261506376	0,002523877	-0,003527102	-0,000819028	-0,003527102	-0,00081902

FUNCIÓN: $Y = A + C_1X_1 + C_2X_2 + C_3X_3 + C_4X_4 + C_5X_5$

En donde:

A=INTERCEPTO; X_1 =NIVEL DE N; X_2 =NIVEL DE P_2O_5 ; X_3 = NIVEL DE K_2O ; X_4 = $X_1*X_2*X_3$; X_5 = X_1*X_1

Anexo 5. Cuadro del modelo No. 2, para la determinación de la función de producción en Maíz (N, P, K, NPK, P2).

Resumen								
Estadísticas de la reg	resión							
Coeficiente de correlación múltiple	0,834160191							
Coeficiente de determinación R^2	0,695823224							
R^2 ajustado	0,632488735							
Error típico	10,64106551							
Observaciones	40							
ANÁLISIS DE VARIANZA								
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F			
Regresión	5	9065,904618	1813,180924	20,0161672	2,88251E-09			
Residuos	35	3963,129635	113,2322753					
Total	40	13029,03425						
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	Superior 95,0%
Intercepción	58,51050356	3,896717174	15,01533238	7,98091E-17	50,59974718	66,42125994	50,59974718	66,42125994
Variable X 1	0,188009715	0,030541059	6,155965803	4,81369E-07	0,12600807	0,250011361	0,12600807	0,250011361
Variable X 2	0	0	65535	#¡NUM!	0	0	0	0
Variable X 3	0,233303695	0,037944788	6,148504337	4,92363E-07	0,15627168	0,310335709	0,15627168	0,310335709
Variable X 4	-2,90193E-05	4,84018E-06	-5,995501667	7,82703E-07	-3,88454E-05	-1,91932E-05	-3,88454E-05	-1,91932E-05
Variable X 5	0,001827894	0,000379448	4,817246787	2,78295E-05	0,001057574	0,002598214	0,001057574	0,002598214

FUNCIÓN: $Y = A + C_1X_1 + C_2X_2 + C_3X_3 + C_4X_4 + C_5X_5$

En donde:

 $A = INTERCEPTO; \ X_1 = NIVEL \ DE \ N; \ X_2 = NIVEL \ DE \ P_2O_5; \ X_3 = NIVEL \ DE \ K_2O; \ X_4 = X_1 * X_2 * X_3; \ X_5 = X_2 * X_2;$

Anexo 6. Cuadro del modelo No. 3, para la determinación de la función de producción en Maíz (N, P, K, NPK, K²).

Resumen								
Estadísticas de la reg	resión							
Coeficiente de correlación múltiple Coeficiente de determinación R^2 R^2 ajustado Error típico Observaciones	0,834160191 0,695823224 0,632488735 10,64106551 40							
ANÁLISIS DE VARIANZA	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F			
Regresión	5	9065,904618	1813,180924	20,0161672	2,88251E-09	•		
Residuos	35	3963,129635	113,2322753					
Total	40	13029,03425				ī		
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	Superior 95,0%
Intercepción	58,51050356	3,896717174	15,01533238	7,98091E-17	50,59974718	66,4212599	50,59974718	66,42125994
Variable X 1	0,188009715	0,030541059	6,155965803	4,81369E-07	0,12600807	0,25001136	0,12600807	0,250011361
Variable X 2	0,182789409	0,037944788	4,817246787	2,78295E-05	0,105757394	0,25982142	0,105757394	0,259821424
Variable X 3	0	0	65535	#¡NUM!	0	0	0	C
Variable X 4	-2,90193E-05	4,84018E-06	-5,995501667	7,82703E-07	-3,88454E-05	-1,9193E-05	-3,88454E-05	-1,91932E-05
Variable X 5	0,002333037	0,000379448	6,148504337	4,92363E-07	0,001562717	0,00310336	0,001562717	0,003103357

FUNCIÓN: $Y = A + C_1X_1 + C_2X_2 + C_3X_3 + C_4X_4 + C_5X_5$

En donde:

A=INTERCEPTO: X₁=NIVEL DE N; X₂=NIVEL DE P₂O₅; X₃= NIVEL DE K₂O; X₄=X₁*X₂*X₃; X₅= X₃*X₃

Anexo 7. Cuadro del modelo No. 4, para la determinación de la función de producción en Maíz (N, P, K, NP, N²).

Resumen								
Estadísticas de la reg	resión							
Coeficiente de correlación múltiple	0,796594553							
Coeficiente de determinación R^2	0,634562883							
R^2 ajustado	0,58082213							
Error típico	11,83376615							
Observaciones	40							
ANÁLISIS DE VARIANZA								
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F			
Regresión	5	8267,741532	1653,548306	11,8078526	1,14905E-06			
Residuos	34	4761,29272	140,0380212					
Total	39	13029,03425						
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	Superior 95,0%
Intercepción	52,13164286	5,292221106	9,850616936	1,7127E-11	41,37655563	62,88673008	41,37655563	62,88673008
Variable X 1	0,609765238	0,146534967	4,16122684	0,0002035	0,311970357	0,907560119	0,311970357	0,907560119
Variable X 2	0,30626875	0,066152764	4,629719641	5,1616E-05	0,17183016	0,44070734	0,17183016	0,44070734
Variable X 3	0,092530536	0,039691658	2,331233808	0,02580564	0,011867382	0,17319369	0,011867382	0,17319369
Variable X 4	-0,002642525	0,000648162	-4,076951027	0,00025958	-0,003959749	-0,001325301	-0,003959749	-0,001325301
Variable X 5	-0,002173065	0,000836774	-2,59695741	0,01379686	-0,003873594	-0,000472537	-0,003873594	-0,000472537

FUNCIÓN: $Y = A + C_1X_1 + C_2X_2 + C_3X_3 + C_4X_4 + C_5X_5$

En donde:

A=INTERCEPTO; X₁=NIVEL DE N; X₂=NIVEL DE P₂O₅; X₃= NIVEL DE K₂O; X₄=X₁*X₂; X₅= X₁*X₁

Anexo 8. Cuadro del modelo No. 5, para la determinación de la función de producción en Maíz. (N, P, K, NK, N²)

Resumen								
Estadísticas de la regi	resión							
Coeficiente de correlación múltiple	0,78831035							
Coeficiente de determinación R^2	0,621433208							
R^2 ajustado	0,565761621							
Error típico	12,04447603							
Observaciones	40							
ANÁLISIS DE VARIANZA								
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F	•		
Regresión	5	8096,674555	1619,334911	11,16248416	2,03473E-06			
Residuos	34	4932,359698	145,0694029					
Total	39	13029,03425				ı		
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95.0%	Superior 95.0%
Intercepción	52,4615	5,386453432	9,739525397	2,28311E-11	41,51490965			
Variable X 1	0.604817381	0,149144142	4,055254016	0,00027631	0,301720019	0,907914743	0,301720019	0,907914743
Variable X 2	0,043665536	0,040398401	1,080872879	0,287361074	-0,038433892	0,125764963	-0,038433892	0,125764963
Variable X 3	0,348536607	0,067330668	5,176491159	1,01383E-05	0,211704228	0,485368987	0,211704228	0,485368987
Variable X 4	-0,002543568	0,000659703	-3,855625014	0,000488809	-0,003884246	-0,00120289	-0,003884246	-0,00120289
Variable X 5	-0,002173065	0,000851673	-2,551525413	0,015392539	-0,003903873	,	,	,

FUNCIÓN: $Y = A + C_1X_1 + C_2X_2 + C_3X_3 + C_4X_4 + C_5X_5$

En donde:

A=INTERCEPTO; X₁=NIVEL DE N; X₂=NIVEL DE P₂O₅; X₃= NIVEL DE K₂O; X₄=X₁*X₃; X₅= X₁*X₁

Anexo 9. Cuadro del modelo No. 6, para la determinación de la función de producción en Maíz (N, P, K, PK, N²).

Resumen								
Estadísticas de la reg	resión							
Coeficiente de correlación múltiple	0,710551519							
Coeficiente de determinación R^2	0,504883461							
R^2 ajustado	0,432072206							
Error típico	13,77432644							
Observaciones	40							
ANÁLISIS DE VARIANZA								
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F	!		
Regresión	5	6578,14391	1315,628782	6,93414028	0,000147201	•		
Residuos	34	6450,890343	189,7320689					
Total	39	13029,03425				•		
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	Superior 95,0%
Intercepción	60,94005952	5,623345222	10,83697641	1,4317E-12	49,51204714	72,36807191	49,51204714	72,36807191
Variable X 1	0,358563988	0,178565193	2,008028449	0,0526386	-0,004324143	0,72145212	-0,004324143	0,72145212
Variable X 2	0,175364583	0,065939568	2,659474268	0,01184976	0,04135926	0,309369907	0,04135926	0,309369907
Variable X 3	0,225878869	0,065939568	3,425543678	0,00161976	0,091873546	0,359884193	0,091873546	0,359884193
Variable X 4	-0,001786125	0,000973992	-1,833819033	0,07544661	-0,003765515	0,000193265	-0,003765515	0,000193265
Variable X 5	-0,00157769	0,001026678	-1,536695025	0,13362303	-0,003664151	0,00050877	-0,003664151	0,00050877

FUNCIÓN: $Y = A + C_1X_1 + C_2X_2 + C_3X_3 + C_4X_4 + C_5X_5$

En donde:

A=INTERCEPTO; X_1 =NIVEL DE N; X_2 =NIVEL DE P_2O_5 ; X_3 = NIVEL DE X_2O ; X_4 = X_2*X_3 ; X_5 = X_1*X_1

Anexo 10. Cuadro del modelo No. 7, para la determinación de la función de producción en Maíz (N, P, K, K²).

Resumen								
Estadísticas de la reg	resión							
Coeficiente de correlación múltiple	0,619546435							
Coeficiente de determinación R^2	0,383837785							
R^2 ajustado	0,313419247							
Error típico	15,145012							
Observaciones	40							
ANÁLISIS DE VARIANZA								
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F			
Regresión	4	5001,035653	1250,258913	5,45080588	0,001611095			
Residuos	35	8027,998599	229,3713886					
Total	39	13029,03425						
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	Superior 95,0%
Intercepción	68,18361111	5,048337334	13,50615195	1,91108E-15	57,93494153	78,43228069	57,93494153	78,43228069
Variable X 1	0,115461409	0,039910611	2,893000283	0,006523333	0,034438562	0,196484256	0,034438562	0,196484256
Variable X 2	0,086058333	0,048880316	1,760592817	0,087044032	-0,013173983	0,18529065	-0,013173983	0,18529065
Variable X 3	0	0	65535	#¡NUM!	0	0	0	0
Variable X 4	0,001365726	0,000488803	2,794020785	0,008387763	0,000373403	0,002358049	0,000373403	0,002358049

FUNCIÓN: $Y = A + C_1X_1 + C_2X_2 + C_3X_3 + C_4X_4$

En donde:

A=INTERCEPTO; X₁=NIVEL DE N; X₂=NIVEL DE P₂O₅; X₃= NIVEL DE K₂O; X₄=X₃*X₃.

Anexo 11. Cuadro del modelo No. 8, para la determinación de la función de producción en Maíz (N, P, K, N²).

Resumen								
Estadísticas de la reg	resión							
Coeficiente de correlación múltiple	0,675212692							
Coeficiente de determinación R^2	0,45591218							
R^2 ajustado	0,393730715							
Error típico	14,23169385							
Observaciones	40							
ANÁLISIS DE VARIANZA								
	Grados de libertad	Suma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F			
Regresión	4	5940,095407	1485,023852	7,33196265	0,000212525			
Residuos	35	7088,938846	202,5411099					
Total	39	13029,03425						
	Coeficientes	Error típico	Estadístico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	Superior 95,0%
Intercepción	60,94005952	5,810064685	10,48870586	2,3972E-12	49,14500122	72,73511783	49,14500122	72,73511783
Variable X 1	0,477638988	0,171864031	2,77916784	0,00870713	0,128736458	0,826541518	0,128736458	0,826541518
Variable X 2	0,086058333	0,045932594	1,873578762	0,06935778	-0,00718979	0,179306457	-0,00718979	0,179306457
Variable X 3	0,136572619	0,045932594	2,973326912	0,00530386	0,043324496	0,229820743	0,043324496	0,229820743
Variable X 4	-0,002173065	0,001006333	-2,159390653	0,03775523	-0,00421603	-0,000130101	-0,00421603	-0,000130101

FUNCIÓN: $Y = A + C_1X_1 + C_2X_2 + C_3X_3 + C_4X_4$

En donde:

A=INTERCEPTO; X₁=NIVEL DE N; X₂=NIVEL DE P₂O₅; X₃= NIVEL DE K₂O; X₄=X₁*X₁.

Anexo 12. Cuadro del modelo No. 9, para la determinación de la función de producción en Maíz (N, P, K, N², P², K², NPK)

Estadísticas de la reg	resión							
Coeficiente de correlación múltiple	0,881613558	•						
Coeficiente de determinación R ^2	0,777242465							
R^2 ajustado	0,728514254							
E rror típico	9,523516209							
Observaciones	40	•						
ANÁLISIS DE VARIANZA						ī		
	Grados de libertad	S uma de cuadrados	Promedio de los cuadrados	F	Valor crítico de F			
Regresión	7	10126,7187	1446,6741	15,95056443	8,14191E-09			
Residuos	32	2902,315552	90,69736099					
Total	39	13029,03425				·		
	Coeficientes	E rror típico	E s tadís tico t	Probabilidad	Inferior 95%	Superior 95%	Inferior 95,0%	S uperior 95,0%
Intercepción	53,54285859	189812531,2	2,82083E-07	0,999999779	-386635418,6	386635525,7	-386635418,6	386635525,7
Variable X 1	0,571807409	0,117655955	4,859995481	2,98391E-05	0,332150073	0,811464746	0,332150073	0,811464746
Variable X 2	6,38331E+13	1,20412E+14	0,530121971	0,599686884	-1,81438E+14	3,09104E+14	-1,81438E+14	3,09104E+14
Variable X 3	-1,32758E+14	1,22746E+14	-1,081565537	0,287529239	-3,82784E+14	1,17268E+14	-3,82784E+14	1,17268E+14
Variable X 4	-0,002415375	0,000697803	-3,461398079	0,001545678	-0,003836753	-0,000993996	-0,003836753	-0,000993996
Variable X 5	-6,38331E+11	1,20412E+12	-0,530121971	0,599686884	-3,09104E+12	1,81438E+12	-3,09104E+12	1,81438E+12
Variable X 6	1,32758E+12	1,22746E+12	1,081565537	0,287529239	-1,17268E+12	3,82784E+12	-1,17268E+12	3,82784E+12
Variable X 7	-2,77143E-05	4,33186E-06	-6,397788102	3,4486E-07	-3,6538E-05	-1,88906E-05	-3,6538E-05	-1,88906E -05

FUNCIÓN: $Y = A + C_1X_1 + C_2X_2 + C_3X_3 + C_4X_4 + C_5X_5 + C_6X_6 + C_7X_7$

En donde:

 $A = INTERCEPTO; \ X_1 = NIVEL \ DE \ N; \ X_2 = NIVEL \ DE \ P_2O_5; \ X_3 = NIVEL \ DE \ K_2O; \ X_4 = X_1*X_1; \ X_5 = X_2*X_2; \ X_6 = X_3*X_3; \ X_7: \ X_1*_{X2}*X_3 = X_1*_{X3} = X_2*_{X3} = X_3*_{X3} = X_1*_{X3} = X_2*_{X3} = X_3*_{X3} = X_1*_{X3} = X_2*_{X3} = X_3*_{X3} = X_1*_{X3} = X_2*_{X3} = X_1*_{X3} = X_2*_{X3} = X_1*_{X3} = X_2*_{X3} = X_1*_{X3} = X_2*_{X3} = X_1*_{X3} =$

Anexo 13.

Cuadro de Residuales, del modelo 8, para determinar la función de producción en Maíz

para determinar la función de producción en Maíz							
Observación	Pronóstico para Y	Residuos	Residuos estándares				
1	79,38934524	-11,43934524	-0,848482434				
2	83,69193452	6,508065476	0,482718121				
3	87,99517857	-2,535178571	-0,188040001				
4	92,29776786	5,102232143	0,378444243				
5	93,04660714	-7,596607143	-0,563457749				
6	97,34919643	17,95080357	1,331452211				
7	101,6524405	16,84755952	1,249622074				
8	105,9550298	-25,55502976	-1,895475083				
9	60,94005952	-12,38005952	-0,918257367				
10	83,20315476	3,316845238	0,246018007				
11	79,38934524	-20,46934524	-1,518258214				
12	83,69193452	11,61806548	0,861738524				
13	87,99517857	-1,595178571	-0,118318048				
14	92,29776786	16,12223214	1,195822881				
15	93,04660714	5,513392857	0,408940975				
16	97,34919643	6,210803571	0,460669525				
17	101,6524405	8,797559524	0,652535138				
18	105,9550298	-19,60502976	-1,454149956				
19	60,94005952	-25,54005952	-1,894364706				
20	83,20315476	2,446845238	0,181488115				
21	79,38934524	-13,96934524	-1,036138328				
22	83,69193452	9,708065476	0,720069449				
23	87,99517857	2,104821429	0,156119426				
24	92,29776786	7,987946429	0,59248428				
25	93,04660714	-0,189464286	-0,014053				
26	97,34919643	-4,499196429	-0,333715703				
27	101,6524405	1,797559524	0,133329107				
28	105,9550298	-37,55502976	-2,785542565				
29	60,94005952	-3,797202381	-0,281647197				
30	83,20315476	15,49684524	1,149436502				
31	79,38934524	8,070654762	0,598618947				
32	83,69193452	6,508065476	0,482718121				
33	87,99517857	3,433392857	0,254662611				
34	92,29776786	5,102232143	0,378444243				
35	93,04660714	0,381964286	0,028331166				
36	97,34919643	17,95080357	1,331452211				
37	101,6524405	10,84755952	0,804588333				
38	105,9550298	-23,55502976	-1,747130502				
39	60,94005952	9,459940476	0,70166545				
40	83,20315476	10,99684524	0,815661196				

Anexo 14.

Cuadro de Residuales, del Modelo 9,
para determinar la función de producción en Maíz.

	para determinar ia	uncion de produc	cion en maiz.
Observación	Pronóstico para Y	Residuos	Residuos estándares
1	76,09479238	-8,144792383	-0,903439402
2	84,96803999	5,23196001	0,580341229
3	94	-8,54	-0,947276754
4	103	-5,6	-0,621165085
5	96	-10,55	-1,170230651
6	106	9,3	1,03157773
7	100,1428535	18,35714648	2,03621758
8	82,42856056	-2,028560556	-0,225012677
9	53,54285859	-4,982858593	-0,552710318
10	92	-5,48	-0,607854404
11	76,09479238	-17,17479238	-1,905068101
12	84,96803999	10,34196001	1,147154369
13	94	-7,6	-0,843009758
14	103	5,42	0,601199064
15	96	2,56	0,283961182
16	106	-2,44	-0,270650501
17	100,1428535	10,30714648	1,143292771
18	82,42856056	3,921439444	0,434975226
19	53,54285859	-18,14285859	-2,012448267
20	92	-6,35	-0,704356837
21	76,09479238	-10,67479238	-1,184072913
22	84,96803999	8,43196001	0,935292706
23	94	-3,9	-0,432597113
24	103	-2,714285714	-0,301074913
25	96	-3,142857143	-0,348613058
26	106	-13,15	-1,458628726
27	100,1428535	3,307146481	0,366836415
28	82,42856056	-14,02856056	-1,556080715
29	53,54285859	3,59999855	0,399320251
30	92	6,7	0,743179655
31	76,09479238	11,36520762	1,260655384
32	84,96803999	5,23196001	0,580341229
33	94	-2,571428571	-0,285228865
34	103	-5,6	-0,621165085
35	96	-2,571428571	-0,285228865
36	106	9,3	1,03157773
37	100,1428535	12,35714648	1,370683561
38	82,42856056	-0,028560556	-0,003168004
39	53,54285859	16,85714141	1,869833512
40	92	2,2	0,24402914

Anexo 15.

Cuadro de datos de campo para determinar la función de producción en Maíz.

la función de producción en Maíz.						
			ndependiente		Variable dependiente	
Repetición					Rendimiento total (qq/Ha.)	
	Y1	50	0	0	67,95	
	Y2	150	0	0	90,20	
	Y3	50	100	0	85,46	
	Y4	150	100	0	97,40	
R1	Y5	50	0	100	85,45	
IX I	Y6	150	0	100	115,30	
	Y7	50	100	100	118,50	
	Y8	150	100	100	80,40	
	Y9	0	0	0	48,56	
	Y10	0	100	100	86,52	
	Y11	50	0	0	58,92	
	Y12	150	0	0	95,31	
	Y13	50	100	0	86,4	
	Y14	150	100	0	108,42	
R2	Y15	50	0	100	98,56	
N2	Y16	150	0	100	103,56	
	Y17	50	100	100	110,45	
	Y18	150	100	100	86,35	
	Y19	0	0	0	35,4	
	Y20	0	100	100	85,65	
	Y21	50	0	0	65,42	
	Y22	150	0	0	93,40	
	Y23	50	100	0	90,10	
	Y24	150	100	0	100,29	
R3	Y25	50	0	100	92,86	
K3	Y26	150	0	100	92,85	
	Y27	50	100	100	103,45	
	Y28	150	100	100	68,40	
	Y29	0	0	0	57,14	
	Y30	0	100	100	98,70	
	Y31	50	0	0	87,46	
	Y32	150	0	0	90,20	
	Y33	50	100	0	91,43	
R4	Y34	150	100	0	97,40	
	Y35	50	0	100	93,43	
	Y36	150	0	100	115,30	
	Y37	50	100	100	112,50	
	Y38	150	100	100	82,40	
	Y39	0	0	0	70,40	
	Y40	0	100	100	94,20	