Escuela Agrícola Panamericana, Zamorano Departamento de Administración de Agronegocios Ingeniería en Administración de Agronegocios

Proyecto Especial de Graduación

Análisis de cadena de valor de diferentes variedades del chile (*Capsicum* spp.), para el desarrollo de un modelo comercial enfocado a la Escuela Agrícola Panamericana, Zamorano.

Estudiante

Amelia Yadeth López Castilblanco Carlos Uziel Rosales Marroquín

Asesores

Julio Rendón, M.A.E

Rommel Reconco, M.A.E

Honduras, Julio 2021

Autoridades

TANYA MÜLLER GARCÍA

Rectora

ANA M. MAIER ACOSTA

Vicepresidenta y Decana Académica

RAÚL SOTO

Director Departamento de Administración de Agronegocios

HUGO ZAVALA MEMBREÑO

Secretario General

Contenido

Índice de Cuadro	6
Índice de Figuras	7
Índice de Anexos	8
Resumen	9
Abstract	10
Introducción	11
Metodología	14
Ubicación del Proyecto	14
Estudio Técnico	14
Establecimiento del Cultivo	16
Diseño Experimental	16
Altura de la Planta	17
Número de Frutos por Planta	17
Peso y Número de Frutos	17
Grados Brix (Sólidos Solubles Totales, SST)	17
Materia Seca	17
Práctica Postcosecha	18
Práctica de Procesamiento	18
Análisis Comercial	18
Tamaño de muestra	19
Análisis Financiero	20
Flujo de Caja	20
Análisis de Rentabilidad	20
Análisis de Riesgo	23

Resultados y Discusión	24
Análisis Técnico	24
Práctica Postcosecha	28
Recepción de Materia Prima	28
Pesado Inicial	29
Lavado	29
Selección	29
Corte	29
Pesado Final	29
Almacenado	29
Practica Procesamiento	
Recepción de Materia Prima	
Pesado Inicial	
Lavado	
Escaldado	
Despulpado	
Peso Final	
Almacenado	
Análisis Comercial	
Análisis Financiero	42
Inversión Inicial	42
Flujo de Caja	45
Indicadores Financieros	47
Análisis de Riesgo	47
Conclusiones	56

Recomendaciones	57
Referencias	58
Anexos	62

Índice de Cuadro

Cuadro 1 Plan de manejo ciclo vegetativo	15
Cuadro 2 Plan de manejo ciclo reproductivo	15
Cuadro 3 Descripción de los tratamientos	16
Cuadro 4 Número de frutos de las 16 variedades de chiles producidos en macrotúnel	25
Cuadro 5 Número de flores de las 16 variedades de chiles producidas en macrotúnel	26
Cuadro 6 Altura de las plantas de chiles producidas en el macrotúnel	27
Cuadro 7 Variables postcosecha de las 16 variedades de chile	28
Cuadro 8 Rendimientos en postcosecha de la primera cosecha de los tratamientos	30
Cuadro 9 Rendimiento en postcosecha de la segunda cosecha de los tratamientos	31
Cuadro 10 Rendimiento en procesamiento de los chiles picantes a pasta	33
Cuadro 11 Variedades con mayor porcentaje de venta y preferencia	42
Cuadro 12 Costos variables requeridos por ciclo	43
Cuadro 13 Costos fijos requeridos por ciclo	44
Cuadro 14 Gastos administrativos requeridos por ciclo de producción	44
Cuadro 15 Flujo de caja del proyecto	46
Cuadro 16 Indicadores financieros del proyecto	47
Cuadro 17 Rendimientos bajo estructuras protegidas (ton/ha)	48
Cuadro 18 Variable de Entrada de Rendimiento @Risk y su Distribución de Probabilidad Utiliza	ada . 48
Cuadro 19 Variable de Entrada de Precio @Risk y su Distribución de Probabilidad Utilizada	49
Cuadro 20 Variables de salida @Risk	49

Índice de Figuras

Figura 1 Flujo de proceso de la postcosecha de los chiles picantes	29
Figura 2 Diagrama del flujo de elaboración de salsa de chiles picantes	32
Figura 3 Distribución de los encuestados al consumo de chiles picantes	34
Figura 4 Porcentaje de preferencia en la manera de consumir chiles picantes	35
Figura 5 Porcentaje en forma específica de consumir chiles picantes	36
Figura 6 Frecuencia de consumo de chiles picantes durante un mes	36
Figura 7 Porcentaje de libras de chiles picantes que compran actualmente los encuestados	37
Figura 8 Porcentaje de anuencia de comprar de una nueva línea de chiles picantes Zamorano	38
Figura 9 Porcentaje de preferencia de los encuestados de chiles picantes	39
Figura 10 Distribución por género	40
Figura 11 Distribución de frecuencia de edad de los encuestados	40
Figura 12 Contraste entre el porcentaje de ventas y el porcentaje de preferencia	41
Figura 13 Resultado de producción neta total	50
Figura 14 Resultado precio de venta Habanero (HNL/Lb)	51
Figura 15 Resultado de precio Cayenne (HNL/Lb)	51
Figura 16 Resultado de precio de venta Serrano (HNL/Lb)	52
Figura 17 Resultado de precio de venta de California Wonder (HNL/Lb)	52
Figura 18 Resultado de precio de venta de Golden California Wonder (HNL/LB)	53
Figura 19 Resultado de precio de venta Poblano (HNL/Lb)	53
Figura 20 Resultado de precio de venta Jalapeño (HNL/Lb)	54
Figura 21 Resultados del VAN utilizado @Risk	55
Figura 22 Resultados de la TIR utilizando @Risk	55

Índice de Anexos

Anexo A Croquis de ensayo de producción de chiles picantes, EAP Zamorano	62
Anexo B Banner de información de la pungencia de las dieciséis variedades de chiles	63
Anexo C Peso por presentación de productos no combinados	64
Anexo D Stand de las variedades de chile picantes en el Supermercado Más x Menos	
Anexo E Datos para plan de siembra de chile jalapeño. Nombre común: Chile jalapeño	66
Anexo F Datos para plan de siembra de chile morrón. Nombre común: Chile morrón	67

Resumen

El cultivo del género *Capsicum* es uno de los más importantes a nivel mundial, debido al impacto positivo que genera a la economía de los países que se dedican a la producción. El chile se ha transformado en uno de los principales condimentos a nivel mundial. Es más, en Honduras se ha convertido en una de las hortalizas más relevantes durante los últimos años. La investigación se realizó con el fin de evaluar la viabilidad técnica y financiera de dieciséis variedades de chiles picantes para un modelo comercial enfocado en Zamorano. Se procedió un estudio técnico evaluando las variables de producción (número de frutos, flores, etc.) y de postcosecha de dieciséis variedades, con la finalidad de identificar las mejores. Adicionalmente, se ejecutó un sondeo mercado del proyecto, en el cual se realizaron encuestas a los posibles clientes, determinando así el nivel de aceptación de cada variedad. Asimismo, se efectuó un análisis financiero para evaluar la viabilidad del proyecto y un análisis de riesgo mediante la aplicación del software @Risk. No se plasmó una inversión inicial, ya que el proyecto se planea para llevarlo a cabo en las instalaciones de Zamorano. El estudio se determinó con un horizonte de evaluación de un año, en el que se pueden realizar 8 ciclos de producción escalonados. Se utilizó una tasa de descuento de 8% obteniendo un VAN de L. 266,609, una TIR de 54%, asimismo se registró un PRI de 1.93 ciclos.

Palabras clave: chile, análisis financiero, variedades, potencial, comercialización.

Abstract

The cultivation of genus Capsicum is one of the most important worldwide, due to the positive impact it generates on the economy of the countries that are dedicated to its production. Chili has become one of the main condiments worldwide. Moreover, in Honduras it has become one of the most important vegetables in recent years. The research was carried out in order to evaluate the technical and financial viability of sixteen varieties of hot peppers for a commercial model focused on Zamorano. A technical study was carried out evaluating the production variables (number of fruits, flowers, etc.) and post-harvest of sixteen varieties, in order to identify the best ones. Additionally, a market survey of the project was carried out, in which surveys were conducted to potential clients, thus determining the level of acceptance of each variety. Likewise, a financial analysis was carried out to evaluate the viability of the project and a risk analysis through the application of the @Risk software. An initial investment was not materialized, since the project is planned to be carried out in the Zamorano facilities. The study was determined with an evaluation horizon of one year, in which 8 staggered production cycles can be carried out. A discount rate of 8% was used, obtaining a NPV of L. 266,609, an IRR of 54%, and a PRI of 1.93 cycles was also recorded.

Keywords: chile, financial analysis, varieties, potential, commercialization.

Introducción

El género *Capsicum*, tiene origen en las regiones tropicales y subtropicales del continente americano. Se le denominan chile o ají a las diversas especies cultivadas que pertenecen a este género. Asimismo, todos los chiles *Capsicum* corresponden a la familia de las Solanáceas. Dicho género comprende 33 especies, de las cuales cinco han sido domesticadas: Capsicum annuum, C. baccatum, C. chinense, C. frutescens y C. pubescens. Se considera como la segunda verdura más popular en el mundo solo después del tomate (Benson et al., 2014)h y en muchos países, es esencialmente valorada por su sabor picante, nutrición y el contenido de pigmentos en los frutos (Tian et al., 2014). La especie annuum es la de mayor importancia económica, se cultiva ampliamente en el mundo (Hernández Verdugo, 2018) y presenta gran variación en su fenología y en el contenido de compuestos bioactivos (Martinez Damián et al., 2019)

El cultivo del *Capsicum* es uno de los más importante a nivel mundial, debido al impacto positivo que genera a la economía de los países que se dedican a la producción. Entre las principales características que distinguen a este cultivo, se destacan la versatilidad dado a los múltiples usos que le dan fruto, sus propiedades nutricionales, la adaptabilidad que poseen las distintas variedades del cultivo a los diversos climas y tipos de suelos, etc.

El fruto del chile no es solo un extraordinario condimento, sino que también se describe por ser uno de los cultivos con mayor capacidad de transformación (Martín y González, 1991) "El chile (*Capsicum* spp.) se utiliza de diversas formas, fresco, seco, como especia en polvo, como colorante natural, como agente antioxidante, como bactericida y fungicida, como medicamento en la industria farmacéutica, en la industria cosmetológica, en industria de embutidos y carnes enlatadas."

El chile se ha transformado en uno de los principales condimentos a nivel mundial (Hernández et al., 2009). En Honduras se ha convertido en una de las hortalizas más importantes durante los últimos. Debido a su gran potencial de comercialización se ha definitivo como el cultivo versátil y prioritario para la investigación y el desarrollo de este proyecto.

Los capsaicinoides son compuestos fenólicos (Bae et al., 2014), amidas derivadas de la vainillilamina, que se sintetizan y acumulan en el tejido de la placenta (Cázares-Sánchez et al., 2018). Son los responsables del picor en los frutos de chile, causado por al menos uno de los 20 compuestos identificados. La capsaicina [(E)-N(4-hidroxi-3-metoxibencil)-8-metil-6-nonenamida)] y la dihidrocapsaicina (su análogo 6,7-dihidro) representan más de 90% del contenido total de los capsaicinoides presentes en los chiles (Vázquez-Flota et al., 2007).

En 1912 el farmacéutico Wilbur Scoville determinó un método para determinar la pungencia de los chiles, conocida como prueba organoléptica de Scoville. Dicha prueba consistía en obtener una disolución del extracto de fruto y diluirlo en agua con azúcar, el número de veces que la muestra debe diluirse para que deje de percibirse la sensación picante determina los grados en la escala del método.

Para el Servicio de Estudios y Estadísticas de la CAPyMA y Departamento de Prospectiva de Unión Europea y Junta de Andalucia (2013) "las cadenas de valor son el estudio en el que se analizan los costos y márgenes de cada uno de los eslabones de la cadena de distribución de un producto, desde el origen hasta el consumidor." Al enfocar esta investigación al análisis de la cadena de valor de 16 variedades de chile se pretende contribuir en el conocimiento e información de las cadenas de comercialización del cultivo.

En otras palabras, el presente estudio pretende analizar la cadena de comercialización de 16 variedades de chile (*Capsicum* Spp.), con la finalidad de describir los procesos, y evaluar el éxito del proyecto con respecto a un estudio financiero.

El objetivo general de este estudio es evaluar la viabilidad tecnica y financiera para un modelo comercial de producción de chiles picantes para Zamorano. Los objetivos especificos son:

Realizar un análisis técnico de las dieciséis variedades.

Evaluar el comportamiento de las variedades de chile bajo el plan de manejo de la unidad de Olericultura Intensiva.

Identificar las variedades de chile con mayor potencial de producción, procesamiento y comercialización.

Realizar un análisis económico financiero para determinar los principales indicadores que permiten aceptar o rechazar el proyecto, utilizando un análisis de escenarios con el software de @Risk

Metodología

Ubicación del Proyecto

El estudio se realizó en un lote de producción bajo macro túnel de la Unidad de Control Biológico de la Escuela Agrícola Panamericana, Zamorano, en el valle del Yeguare, a 30 Km de Tegucigalpa, carretera a Danlí, Honduras. El sitio está a 800 msnm. Durante el estudio la temperatura promedio fue de 23.3 °C y una precipitación anual de 1,023 mm, el estudio se realizó entre los meses de enero a mayo del 2022.

Estudio Técnico

Las 14 variedades utilizadas en el ensayo se obtuvieron de la marca estadounidense Organo Republic©, los 2 testigos; Poderoso F1, perteneciente a la casa comercial East-West Seed® y Papantla, de la casa comercial Seminis®.

En este estudio se evaluó el rendimiento obtenido de cada variedad en condiciones de macro túnel, con fertirriego por goteo. Asimismo, se tomaron en cuentas variables como: susceptibilidad a plagas y enfermedades, desarrollo fisiológico y potencial de florescencia. Asimismo, se determinó el tamaño de los frutos, el peso respectivo de los frutos cosechados en cada variedad y el número de fruto por planta.

Cuadro 1Plan de manejo ciclo vegetativo

	Cosechas de Macro túneles		
Semana 10 y 11	Semana 12 y 13	Semana 14	
Riego con AF, AH y fertilización Mineral 16 y 18 riegos.	Riego con AF, AH y fertilización Mineral 18 riegos.	Riego con AF, AH y fertilización Mineral 18 riegos.	
Tutoreo de Plantas de Chile	Tutoreo de Plantas de Chile	Tutoreo de Plantas de Chile	
Acomodar las plantas de Chile	Acomodar las plantas de Chile	Acomodar las plantas de Chile	
Podas de hojas bajeras	Podas de hojas bajeras	Podas de hojas bajeras	
Podas de Brotes	Podas de Brotes	Podas de Brotes	
Poda de Frutos dañados	Poda de Frutos dañados	Poda de Frutos dañados	
Cosecha de Macro túneles	Cosecha de Macro túneles	Cosecha de Macro túneles	

Nota. Jefe técnico Olericultura intensiva

Cuadro 2

Plan de manejo ciclo reproductivo

	Cosechas de Macro túneles	
Semana 10 y 11	Semana 12 y 13	Semana 14
Riego con AF, AH y fertilización Mineral 16 y 18 riegos.	Riego con AF, AH y fertilización Mineral 18 riegos.	Riego con AF, AH y fertilizaciór Mineral 18 riegos.
Tutoreo de Plantas de Chile	Tutoreo de Plantas de Chile	Tutoreo de Plantas de Chile
Acomodar las plantas de Chile	Acomodar las plantas de Chile	Acomodar las plantas de Chile
Podas de hojas bajeras	Podas de hojas bajeras	Podas de hojas bajeras
Podas de Brotes	Podas de Brotes	Podas de Brotes
Poda de Frutos dañados	Poda de Frutos dañados	Poda de Frutos dañados
Cosecha de Macro túneles	Cosecha de Macro túneles	Cosecha de Macro túneles

Nota. Jefe técnico de Olericultura intensiva

Cuadro 3Descripción de los tratamientos

Tratamiento	Variedad
T1	Red Cherry
T2	Serrano
Т3	Pepperoncini
T4	Big Jim
T5	Hungarian Sweet Wax (Banana)
T6	Hungarian Hot Wax
Т7	Poblano
Т8	Jalapeño
Т9	Golden California Wonder
T10	Cubanelle
T11	Cayenne
T12	California Wonder
T13	Anaheim
T14	Habanero
T15	Papantla
T16	Poderoso F1

Establecimiento del Cultivo

La producción de plántulas se realizó en semilleros en bandejas de 200 alveolos y bajo invernadero tipo túnel. El trasplante se realizó el 4 de marzo del 2022, a los 39 días después de siembra en bolsas de sustrato, con una densidad de población de 800 plantas por 420 m2.

Diseño Experimental

Se utilizó un diseño de Bloques Completos al Azar (BCA) con arreglo factorial con 4 bloques obteniendo 64 unidades experimentales, con 12 plantas en promedio por unidad. Utilizando el programa estadístico Infostat® y SAS (Statistical Analysis Sistema) ® con un análisis de varianza ANDEVA y una separación de medias por Tukey, con una probabilidad de ≤ 0.05. A continuación se describen las variales de medición.

Altura de la Planta

Se eligieron aleatoriamente cuatro plantas de cada repetición por cada material y se midieron desde la base del tallo hasta el último brote apical desarrollado del tallo principal.

Número de Frutos por Planta

Al momento de la cosecha se contabilizó el número de frutos por planta en cada una de las cuatro repeticiones para cada material.

Peso y Número de Frutos

Se eligieron aleatoriamente cuatro plantas por repetición de cada uno de los materiales, se contabilizó el número de frutos por cada planta y se determinó el peso de los cinco frutos.

Variables postcosecha

Las variables postcosecha se midieron únicamente en chiles comerciales. En la última toma de muestra se realizó la recolección de tres frutos representativos de cada unidad experimental, para evaluar peso de frutos, grados brix y materia seca.

Grados Brix (Sólidos Solubles Totales, SST)

El refractómetro digital HI 96801®, permitió medir los sólidos solubles totales de los frutos de chile. Los frutos se cortaron a la mitad y la parte con mayor contenido de jugo se exprimió para realizar el análisis.

Materia Seca

Se realizó la recolección de tres frutos significativos de cada UE. Cada fruto se dividió en ocho partes, se tomó el peso fresco y posteriormente llevándolo al horno a 75 °C por 42 horas

aproximadamente. Finalmente se tomó el peso seco. En total fueron 48 muestras. Los datos de materia seca se obtuvieron empleando la ecuación [1] a continuación.

$$\%MS = \frac{(peso\ inicial - peso\ seco)}{peso\ inicial} * 100$$
 [1]

Práctica Postcosecha

Esta práctica se realizó en la planta de Hortofrutícola de la Escuela Agrícola Panamericana Zamorano, ubicada 30 km. al este de la capital Tegucigalpa, departamento de Francisco Morazán, Honduras, C.A.

En la planta se aplicó los debidos procesos de postcosecha, las cuales están directamente relacionadas con el manejo y control de variables como: la temperatura y la humedad relativa. Esta práctica tiene por objetivo mantener las características y la calidad de los chiles.

Práctica de Procesamiento

El objetivo de esta práctica era agregarle valor añadido al subproducto de los frutos de las diferentes variedades de chile. Se determinó el rendimiento que hay del fruto no comercial a una pasta. Debido a que las pruebas del proyecto se realizaron a escala laboratorio la materia prima que se utilizó 5 libras de cada variedad de chile que no clasificó.

Durante el procesamiento, se utilizó el equipo necesario para evitar contaminación del producto; redecillas, mascarillas, gabacha, botas de hule. Así mismo, para la manipulación de los frutos se utilizaron guantes de látex para evitar irritación en la piel debido a los aceites volátiles que presentan.

Análisis Comercial

Se utilizó Trade Marketing para el desarrollo de una forma adecuada de exhibición y mercadeo en un punto de venta. Esta serie de herramientas, pertenecen a una rama de la mercadotecnia que

tiene como objetivo aumentar la demanda del producto a lo largo de la cadena de distribución, así sea por el mayorista, minorista, o a nivel de distribuidor en lugar de a nivel del consumidor (Randall, 2000).

Por otro lado, este estudio tuvo como finalidad identificar el potencial del mercado a través de cuestionarios a compradores aleatorios de la categoría de producto fresco del puesto de venta Zamorano y el supermercado hondureño Más x menos.

Al ser una serie de vegetales poco comunes en la región, se decidió dirigir los esfuerzos de marketing principalmente a los consumidores pertenecientes a los quintiles 4 y 5, quienes cuentan con una capacidad económica mayor (Banco Mundial, 2019).

Tamaño de muestra

Para calcular el tamaño de la muestra se utilizó la fórmula de población finita, por la razón de conocer el tamaño total de la población que se desea investigar, empleando la ecuación [2]:

$$n = \frac{N*Z_{\alpha}^{2}*p*q}{e^{2}*(N-1)+Z_{\alpha}^{2}*p*q}$$
 [2]

Ecuación 2. Fórmula población finita

Donde:

n = Tamaño de muestra buscando

N= Tamaño de la población o universo

Z = Parámetro estadístico que depende el nivel de confianza

e = Error de estimación máximo aceptado

p = Probabilidad de que ocurra el evento estudiado

q = (1-p) Probabilidad de que no ocurra el evento estudiado

$$n = \frac{3000*1.645^2*0.5*0.5}{0.1^2*(3000-1)+1.645^2*0.5*0.5}$$
 [2]

n = 66 encuestas

Ecuación 2. Fórmula población finita

Se realizó las encuestas de manera personal, siendo este un método de recolección de datos con la característica de estar cara a cara con el entrevistado, con el fin de lograr una gran cantidad de información del encuestado, con una tasa de respuesta del 100%

Análisis Financiero

Este estudio se enfocó en determinar el análisis costo—beneficio del proyecto, con lo que se puede analizar la viabilidad financiera del plan de producción de cada una de las variedades de chile, para su posterior implantación y ejecución. Por otro lado, dicho análisis tomo en cuenta: supuestos financieros, flujo de caja, estado de resultados y análisis de rentabilidad.

Flujo de Caja

Se realizó un flujo de caja para las tres variedades de chile que tuvieron mejor rendimiento en base a la producción en macro túnel, adaptación y comercialización.

Análisis de Rentabilidad

Para determinar la rentabilidad del proyecto se elaboró un cuadro resumen para las tres mejores variedades de chile, donde se incluyó los indicadores financieros obtenidos a través del flujo de caja, los cuales son: Valor actual neto (VAN), índice de rentabilidad (IR), Tasa interna de retorno (TIR) y el periodo de recuperación de la inversión (PRI).

El Valor Actual Neto (VAN).

El Valor Actual Neto también se conoce como Valor Presente Neto, y es una medida de cuanto valor se crea hoy al efectuar una inversión (Ross et al., 2010). Para poder calcular el VAN se utilizaron los flujos de caja y para tomar una decisión se tomaron en consideración los siguientes criterios. "Si el VAN es mayor que cero debe aceptarse el proyecto y si el VAN es menor que cero debería rechazarse el proyecto. Cuando el VAN es igual a cero, es indiferente en realizar o no la inversión" (Arias, 2014). Su fórmula es la siguiente:

$$VAN = \sum_{t=1}^{n} \frac{FC_t}{(1+i)^n} - I_0$$
 [3]

Ecuación 3. Fórmula Valor Actual Neto

Donde:

FC: Flujo de caja de un periodo

n: Número de periodos considerado

i: Tasa de descuento

I_o: Inversión inicial del proyecto

El Periodo de Recuperación de la Inversión (PRI).

Es el tiempo necesario para poder recuperar la inversión. Este indicador no toma en cuenta el valor del dinero en el tiempo. La fórmula es la siguiente:

$$PRI = (T - 1) + \frac{I - \sum_{i=1}^{T-1} FCi}{FC_t}$$
 [4]

Ecuación 4. Fórmula Periodo de Recuperación de la Inversión

Donde:

T: Número de periodos para cubrir la inversión

I: Costo de la inversión

22

FCi: Flujo de efectivo en el período i

FCT: Flujo de efectivo donde se cubre totalmente la inversión

Índice de Rentabilidad (IR).

Mide el rendimiento que genera cada dólar invertido en el proyecto descontado al valor presente.

$$IR = 1 + \frac{VAN}{I_0}$$
 [5]

Ecuación 5. Fórmula Índice de rentabilidad

Donde:

VAN = es igual al valor actual neto.

 I_{O} = es igual a la inversión inicial

La Tasa Interna de Retorno (TIR).

Es la tasa de descuento que iguala a la sumatoria de los flujos de efectivo incluida la inversión inicial, es decir cuando el VAN es igual a 0. Esta mide el rendimiento del dinero mantenido en el proyecto, y no depende de otra cosa que no sean los flujos de efectivo de aquel (Mete, 2014). Su fórmula es la siguiente:

$$TIR = \sum_{t=1}^{n} \frac{FC}{(1 + TIR)^{t}} - I_{0} = 0$$
 [6]

Ecuación 6. Fórmula Tasa Interna de Retorno

Donde:

n: es el número de periodos considerados en el proyecto.

FC: flujo de caja en el periodo t.

TIR: tasa interna de retorno que hace el VAN sea igual a 0.

t: número de periodo específico.

I0: es el valor del desembolso inicial de la inversión.

Análisis de Riesgo

Se realizó un análisis de incertidumbre utilizando la simulación Montecarlo utilizando el software @risk de la empresa Palisade. Por otro lado, las variables estocásticas evaluadas en el proyecto fueron producción con una distribución pert y precio con una distribución triangular respectivamente.

Resultados y Discusión

Análisis Técnico

Se realizó una distribución aleatoria en campo, constando de 4 bloques en los cuales se repetían las 16 variedades a evaluar (Anexo A). Esto sin que ninguna coincidiera, para evitar un posible sesgo.

Se recopilaron los datos de altura, número de flores, número de los frutos, a partir de la semana 6 de vida de las plantas, hasta la 10. Estos datos se utilizaron para evaluar el potencial productivo de las variedades bajo el manejo que se les dio en el área de Oleicultura Intensiva. Debido a que existe diferencia estadística en la semana en la que fueron tomados los datos, se realizó un ANDEVA por cada variable.

Para la variable frutos, se realizó la comparación a través de las semanas, para observar si el desarrollo de las variedades era constante. El análisis Duncan demostró que las mejores variedades en cuanto a cantidad de frutos a través del tiempo fueron: Pepperoncini, Poderoso F1, Hungarian Sweet Wax, Cayenne, Hungarian Hot Wax y Papantla.

Como se muestra en el cuadro 4 existe una diferencia significativa en el número de frutos entre las dieciséis variedades de chile picante, según (J. Martínez, 2018) podría deberse a la expresión genotípica de cada cultivo. El número total de frutos presentes en las plantas pudo ser afectado por la ausencia de polinizadores ya que en un espacio cerrado como lo es un invernadero se impide el paso de los insectos polinizadores que se encuentran de manera natural en las parcelas, siendo la polinización el factor que induce el amarre de frutos.

Cuadro 4Número de frutos de las 16 variedades de chiles producidos en macrotúnel

Variedad	Semana 6	Semana 7	Semana 8	Semana 9	Semana 10
Red Cherry	3.875 bc	7.938	15	17.125	23.375
Serrano	0.75	1.438	12.563	19.688	33.375
Pepperoncini*	8.188 a	14.938 a	39.375 a	112.938 a	112.875 a
Big Jim	3.125	6.375	11.813	15.813	21.125
Hungarian Sweet Wax*	5.063 b	10.813 bc	21.438 cd	60.813 c	66.375 c
Hungarian Hot Wax*	5.625 b	10.25 bc	23.625 c	53.438 cd	56.313 cd
Poblano	1.75	3.5	6.313	29	29.063
Mini Jalapeño	3.688 bc	6.75	19.938	25.688	29.438
Golden California.	2.938	6.063	8.375	8.125	11.25
Cubanelle	3.063	7.688	14.5	32.25	33.25
Cayenne*	5.25 b	11.875 ab	29.313 b	41.438 d	63.938 c
California W.	3.688 bc	6.00	8.188	10.063	6.75
Anaheim	2.875	9.25 bcd	16.563	42.375	44.875
Habanero	0.063	0.063	1.25	7.25	15
Papantla*	3.5	7.438	19.813	47.688 cd	52.5 cd
Poderoso F1*	5.688 b	9.125	21.25 cd	78.313 b	85.625 b
Valor p	<.0001	<.0001	<.0001	<.0001	<.0005
CV (%)	94.5	94.5	66.11	47.75	69.2
R2	0.25	0.25	0.37	0.58	0.48

Nota. letra diferente indica una diferencia significativa entre las variedades

Como se muestra en el cuadro 5, para la variable flores, se realizó la comparación a través de las semanas, para observar si el desarrollo de las variedades era constante. El análisis Duncan demostró que las mejores variedades en cuanto a cantidad de flores a través del tiempo fueron: Serrano, Pepperoncini, Mini Jalapeño, Cayenne y Habanero.

Cuadro 5

Número de flores de las 16 variedades de chiles producidas en macrotúnel

Variedad	Semana 6	Semana 7	Semana 8	Semana 9	Semana 10
Red Cherry	5.125 d	13.25	11.75	5.813	4.75
Serrano*	0.3125	21.438 c	40.125 a	46.5 a	40.5 a
Pepperoncini*	5.5 b	38.25 a	35.75 a	24.5 c	26.188 b
Big Jim	2.8125	13.625	14.25	8.313	4.938
Hungarian Sweet Wax	3.25	11.438	8.875	3.5	1.938
Hungarian Hot Wax	6.1875 b	14.813	13.5	6.375	3.813
Poblano	3.75	14.313	13.688	6.813	6.063
Mini Jalapeño*	5.9375 b	27.938 b	22 c	18.938 c	11.063 c
Golden California	1.9375	11	10.188	3.688	1.25
Cubanelle	5 d	18.375 d	12.688	7.688	3.5
Cayenne*	10.1875 a	24.75 b	23.063 c	19.188 c	16.813 c
California W.	2	10.688	6.875	3.938	1.375
Anaheim	4.5	13.813	11.813	5	4.625
Habanero*	0	11.063	30.125 c	35.125 b	35.938 a
Papantla	1.625	11.75	12.563	6.75	3.063
Poderoso F1	3.125	12.063	8.938	4.25	1.375
Valor p	<.0001	<.0001	<.0001	<.0001	<.0001
CV (%)	66.87	47.41	55.88	78.16	81.94
R2	0.5	0.5	0.5	0.6	0.7

Nota. letra diferente indica una diferencia significativa entre las variedades

Como se muestra en el cuadro 6, para la variable altura, se realizó la comparación a través de las semanas, para observar si el desarrollo de las variedades era constante. El análisis Duncan demostró que las mejores variedades en cuanto altura (cm) a través del tiempo fueron: Poblano, Serrano, Cayenne, Poderoso F1, Mini Jalapeño y Pepperoncini.

Cuadro 6Altura de las plantas de chiles producidas en el macrotúnel

\/aviadad	Camara C	Camana 7	Camana 0	Camana 0	Camana 10
Variedad	Semana 6	Semana 7	Semana 8	Semana 9	Semana 10
Red Cherry	65.125	76.438	84.375	89.75	107.125
Serrano*	81.125 ab	99.375 ab	115.875 a	125.375 b	144.75 b
Pepperoncini*	77.438 ab	89.813 cd	106.25 b	114.375 cd	123.438
Big Jim	67.188	75.188	85.625	92.875	110.313
Hungarian Sweet Wax	67.75	82.688	96.25	104.938	117.813
Hungarian Hot Wax	67.313	78.313	90.188	103.625	125.125
Poblano*	84.188 a	105.313 a	123.313 a	138.688 a	161.063 a
Mini Jalapeño*	74.688 bc	90.75 cd	105.313 b	115.75 bc	130.875 cd
Golden California	51.688	59	65.813	73.563	84.125
Cubanelle	67.125	80.938	90.688	98.438	118.063
Cayenne*	74.25 bc	90.5 cd	104.375 bc	116.375 bc	137.938 bc
California W.	54.5	65.5	72.813	78.688	90.938
Anaheim	73.375 bc	85.625	98.563	112.313	134.875 bc
Habanero	48 a	63.188	83.563	104.125	126.625
Papantla	72.875 bc	91.688 bc	105.188 b	110.875	117.75
Poderoso F1*	73.938 bc	91.938 bc	107.625 b	120.625 BC	135.063 bc
Valor p	<.0001	<.0001	<.0001	<.0001	<.0001
CV (%)	17.32	13.18	12.12	12.03	12.31
R2	0.45	0.6	0.65	0.67	0.62

Nota. letra diferente indica una diferencia significativa entre las variedades

En el cuadro 7, se puede observar que entre las dieciséis variedades de chile picantes hay diferencias significativas en cada una de las variables medidas. La variedad con mayor peso del fruto es el California Wonder. Por otro lado, la variedad Cayenne presentó los valores de brix y materia seca más alto.

Los frutos de chile Cayenne en contraste con los frutos de las demás variedades registraron diferencia significativa en el contenido de solidos solubles totales. De acuerdo con (J. Martínez, 2018) esto es atribuido a la cantidad de agua presente en los frutos a la hora de cosecha y a la expresión genotípica de cada cultivo. Asimismo, según (Méndez et al., 2004) la diferencia significativa se puede explicar dado que el contenido de azúcar depende de la especie, el estado de nutrición, la cantidad de frutos y el estado de desarrollo de los materiales.

Por otro lado, los frutos de chile Cayenne en contraste con los frutos de las demás variedades registraron diferencia significativa en los valores de materia seca. De acuerdo con (Molina et al., 1994) esta variable es importante con respecto a la calidad industrial porque entre mayor sea el porcentaje de materia seca, menor cantidad de frutos se necesita para obtener un kilogramo de peso seco.

Cuadro 7

Variables postcosecha de las 16 variedades de chile

Variedad	Nombre	Peso de fruto (g)	°Brix	Materia Seca (g)
1	Red Cherry	24.7 hg	6.9 b	8.6 bcd
2	Serrano	8.3 i	4.7 cdef	8.7 bc
3	Pepperoncini	9.0 i	4.3 defg	8.5 bcde
4	Big Jim	65.8 c	5.0 cd	7.8 bcdefg
5	Hungarian Sweet Wax	30.3 fg	6.2 b	8.8 b
6	Hungarian Hot Wax	32.0 efg	4.7 cdefg	7.2 bcdefg
7	Poblano	35.8 ef	4.0 efg	7.5 bcdefg
8	Jalapeño	19.3 h	4.8 cde	8.7 bcd
9	Golden California Wonder	164.7 b	4.1 efg	6.6 fg
10	Cubanelle	47.4 d	4.6 defg	7.0 defg
11	Cayenne	6.5 i	11.7 a	17.9 a
12	California Wonder	178.8 a	5.4 c	6.8 efg
13	Anaheim	38.9d ef	4.5 defg	8.2 bcdef
14	Habanero	10.1 i	3.9 g	7.1 cdefg
15	Jalapeño Seminis	40.6 de	3.9 fg	7.2 bcdefg
16	Jalapeño F1	34.0 efg	4.3 defg	6.4 g
	CV (%)	20.3	14.5	10.16
	R2	0.97	0.87	0.94
	Valor p	<.0001	<.0001	<.0001

Nota. letra diferente indica una diferencia significativa entre las variedades

Práctica Postcosecha

El flujo de proceso desarrollado para los chiles picantes fue el siguiente:

Recepción de Materia Prima

La materia prima se recibió en la planta de Postcosecha de Zamoran

Pesado Inicial

Se realizó un pesado inicial de la materia prima en una balanza de acero inoxidable.

Lavado

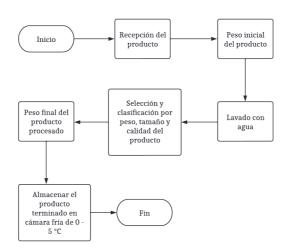
Se lavaron las diferentes variedades de chiles picantes con abundante agua.

Selección

Por consiguiente, se realizó la selección de los chiles picantes que no presentaron daños físicos o biológicos.

Corte

Se ejecutó el corte a ras del péndulo de los frutos para evitar daños en otras frutas.


Pesado Final

Se realizó un segundo pesado de los chiles picantes con la finalidad de determinar el peso actualizado después de la selección y el corte del pedúnculo.

Almacenado

El almacenamiento de los chiles fue en un cuarto frío para mantener el grado de frescura y las características organolépticas.

Flujo de proceso de la postcosecha de los chiles picantes

Como se muestra en el cuadro 8, se realizó la primera cosecha de las variedades de chiles que presentaban su etapa de madurez fisiológica. Por otro lado, se enfatiza que el rendimiento alcanzado de las variedades oscila entre 86% a 96%, lo que indica que el porcentaje de merma en postcosecha varía entre 4% a 14%.

Cuadro 8

Rendimientos en postcosecha de la primera cosecha de los tratamientos

Variedad	Nombre	Peso campo Lb	Peso comercial Lb	Rendimiento
1	Red Cherry	-	-	-
2	Serrano	-	-	-
3	Pepperoncini	9.80	8.55	87%
4	Big Jim	3.15	2.70	86%
5	Hungarian Sweet Wax	29.05	26.85	92%
6	Hungarian Hot Wax	13.40	12.35	92%
7	Poblano	13.70	12.05	88%
8	Mini jalapeño	-	-	-
9	Golden California Wonder	-	-	-
10	Cubanelle	19.15	18.10	95%
11	Cayenne	-	-	-
12	California Wonder	-	-	-
13	Anaheim	19.20	18.15	95%
14	Habanero	-	-	-
15	Poderoso Jalapeño F1	12.65	10.85	86%
16	Seminis Jalapeño	27.70	26.65	96%
Total		147.80	136.25	

Como se muestra en el cuadro 9, se realizó la segunda cosecha de las variedades de chile que presentaron su estado óptimo de madurez fisiológica y comercial. Cabe mencionar, que el rendimiento en postcosecha de las 16 variedades de chile oscila entre 86% a 97%, lo cual indica que el porcentaje de merma en postcosecha es de un 3% a 14%.

Cuadro 9

Rendimiento en postcosecha de la segunda cosecha de los tratamientos

Variedad	Nombre	Peso campo Lb	Peso comercial Lb	Rendimiento
1	Red Cherry	4.8	4.5	94%
2	Serrano	14.9	13.4	90%
3	Pepperoncini	19.1	17.65	92%
4	Big Jim	19.5	18.75	96%
5	Hungarian Sweet Wax	14.85	13.5	91%
6	Hungarian Hot Wax	9.9	8.85	89%
7	Poblano	10.15	9.6	95%
8	Mini jalapeño	23.2	19.95	86%
9	Golden California Wonder	16.15	14.15	88%
10	Cubanelle	15.45	14.25	92%
11	Cayenne	2.95	2.85	97%
12	California Wonder	37.85	35.55	94%
13	Anaheim	16.95	15.75	93%
14	Habanero	2.7	2.5	93%
15	Poderoso Jalapeño F1	37.55	35	93%
16	Seminis Jalapeño	14.35	13.8	96%
Total		260.35	240.05	

Practica Procesamiento

El flujo de proceso desarrollado para el procesamiento de los chiles picantes que no clasificaron como fruto comercial a merma, fue el siguiente:

Recepción de Materia Prima

La materia prima se recibió en la planta de procesamiento hortofrutícola de Zamorano.

Pesado Inicial

Se realizó un pesado inicial de la materia prima en una balanza de acero inoxidable.

Lavado

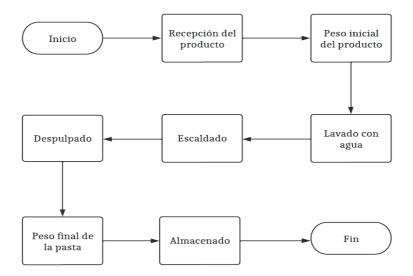
Se realizó un lavado de la materia prima.

Escaldado

Se realizó un tratamiento térmico en los chiles con la finalidad de eliminar los patógenos superficiales y reafirmar el color de la hortaliza.

Despulpado

Los chiles pasaron por un despulpador para eliminar la cáscara y la semilla, obteniendo así la pasta.


Peso Final

Se realizó el pesado final de la pasta de chile de cada variedad.

Almacenado

El producto terminado se almacena en el cuarto frio para ser empleado posteriormente.

Figura 2Diagrama del flujo de elaboración de salsa de chiles picantes

Como se muestra en el cuadro 10, se realizó la práctica de procesamiento estandarizando 3 libras de chile picante no comercial por cada variedad, con la finalidad de obtener datos comparables y coherentes. No se evaluaron las variedades dulces, debido a que no clasifican como materia prima para la elaboración de una pasta para salsa picante.

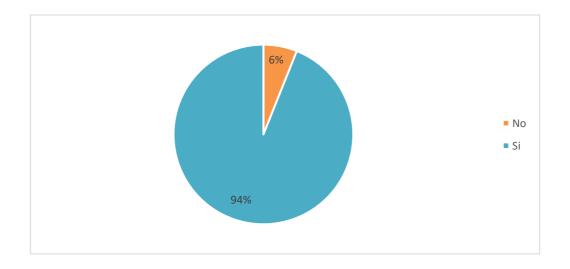
Por otro lado, el rendimiento en procesamiento de chile no comercial a pasta oscila entre 67% a 97%, lo cual indica que el porcentaje de merma en procesamiento es de un 3% a 33%.

Cuadro 10Rendimiento en procesamiento de los chiles picantes a pasta

Variedad	Nombre	Peso campo Lb	Peso comercial Lb	Rendimiento
1	Red Cherry	4.8	4.5	94%
2	Serrano	14.9	13.4	90%
3	Pepperoncini	19.1	17.65	92%
4	Big Jim	19.5	18.75	96%
5	Hungarian Sweet Wax	14.85	13.5	91%
6	Hungarian Hot Wax	9.9	8.85	89%
7	Poblano	10.15	9.6	95%
8	Mini jalapeño	23.2	19.95	86%
9	Golden California Wonder	16.15	14.15	88%
10	Cubanelle	15.45	14.25	92%
11	Cayenne	2.95	2.85	97%
12	California Wonder	37.85	35.55	94%
13	Anaheim	16.95	15.75	93%
14	Habanero	2.7	2.5	93%
15	Poderoso Jalapeño F1	37.55	35	93%
16	Seminis Jalapeño	14.35	13.8	96%
	Total	260.35	240.05	

Análisis Comercial

A través del Trade Marketing, se identificó al minorista como el punto clave para la creación y aumento de la demanda de chiles picantes. Para ello, se elaboró un stand promocional, basado en


estrategias de Merchandising y el uso de material POP (promotion on purchase), elaborando un diseño que fuera atractivo y motivara la compra (Anexo B).

Se realizó una prueba piloto en el Puesto de Ventas Zamorano, con la finalidad de evaluar la percepción de los clientes habituales ante las nuevas variedades, así como la validación de la encuesta realizada. En base a dicha experiencia, se eliminaron y modificaron diversas preguntas, ya que evidenció que la redacción de algunas dificultaba su comprensión.

El sondeo final se realizó en el supermercado Más por Menos, ubicado en la colonia Palmira, Tegucigalpa. Se escogió este centro minorista, debido a que es reconocido por recibir clientes de un poder adquisitivo mayor, pertenecientes a los quintiles de ingreso superiores.

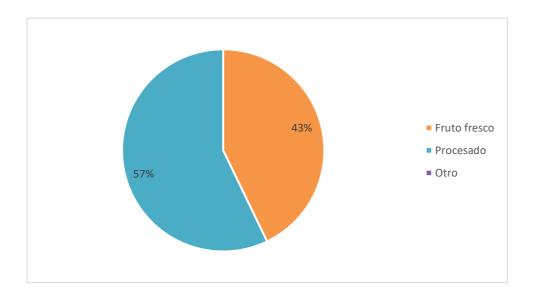
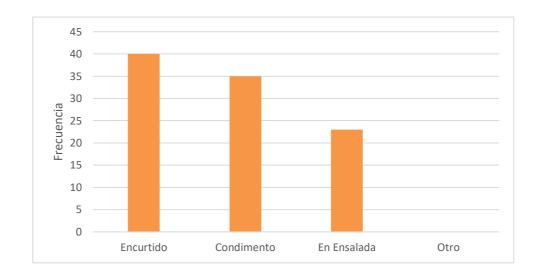

Se realizó un total de 66 encuestas. En la figura 3 se muestra que las encuestas realizadas en el supermercado Más por Menos indicaron que el 94% de los encuestados consumen chiles picantes, y el 6% no consume este tipo de commodity, lo cual nos indica que hay una gran cantidad de consumidores potenciales.

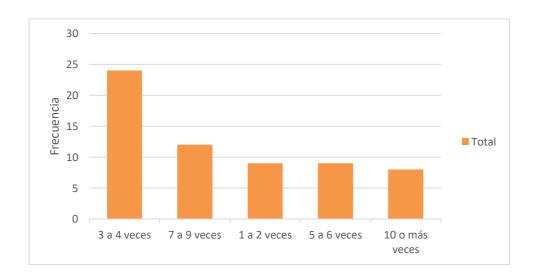
Figura 3Distribución de los encuestados al consumo de chiles picantes

En la figura 4 se muestra que del 94% de personas que consumen chiles picantes, el 57% confirma su consumo de manera procesada y el 43% lo consume como fruto fresco. Esto indica que los consumidores en la actualidad consumen más chile picante de manera procesada que en fruto fresco.


Figura 4Porcentaje de preferencia en la manera de consumir chiles picantes

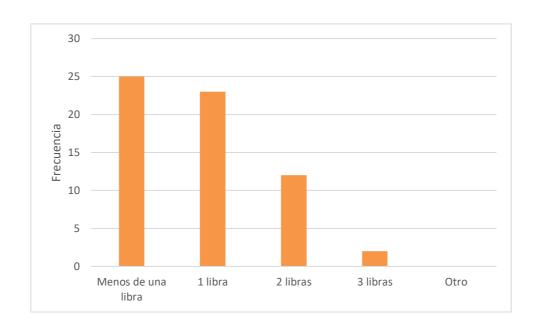
En la figura 5, se muestra la forma específica de los encuestados en consumir los chiles picantes. Del 94% de personas que consumen chiles picantes, el 41% asignó consumirlos en encurtidos caseros, el 36% señaló consumirlos en condimentos y el 23% especificó ingerirlos en ensaladas.

Figura 5


Porcentaje en forma específica de consumir chiles picantes

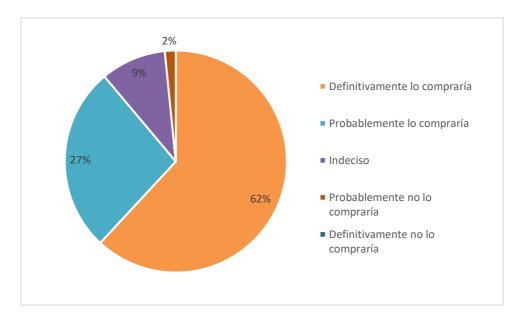
En la figura 6, se muestra la frecuencia de consumo de chiles picantes de los encuestados durante un mes. Del 94% de los encuestados que consume chile, el 39% marcó frecuencia de 3 a 4 veces de consumo de chiles picantes durante un mes, a diferencia de un grupo reducido de encuestados de 13% que señaló una frecuencia de 10 o más veces.

Figura 6


Frecuencia de consumo de chiles picantes durante un mes

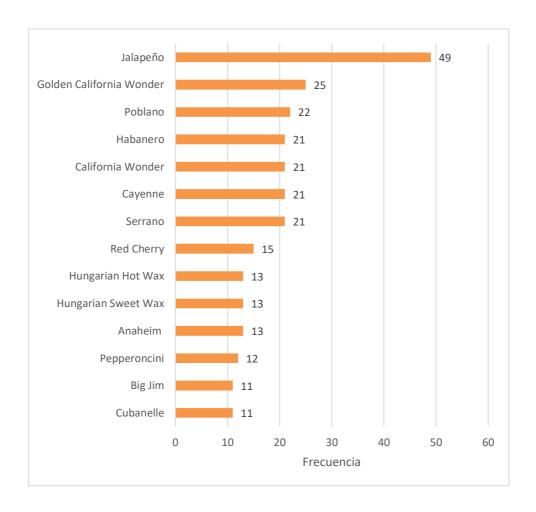
Por otro lado, en la figura 7 se muestra las libras de chiles picantes que compran los usuarios encuestados actualmente en sus visitas a los supermercados. Retomando el análisis de los datos de la encuesta, del 94% que consumen chiles picantes, un 40% marcó adquirir menos de 1 libra en sus compras, un 37% señaló adquirir 1 libra, un 20% indicó comprar 2 libras y un 3% de los encuestados designó comprar 3 libras de chiles picantes en sus compras actuales. Esto indica que hay un mercado vigente de chiles picantes.

Figura 7


Porcentaje de libras de chiles picantes que compran actualmente los encuestados

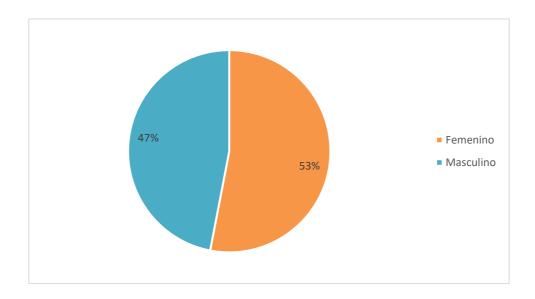
De igual modo, como se muestra en la figura 8. se procedió a determinar la anuencia de consumo de una posible línea de chiles picantes Zamorano, un 62% contestó que definitivamente lo compraría, mientras un 27% señaló que probablemente lo compraría, un 9% respondió que estaría indeciso y un 2% respondió que probablemente no lo compraría. Por consiguiente, se demuestra una anuencia de compra aceptable correspondiente a la posible línea de chiles picantes Zamorano.

Figura 8

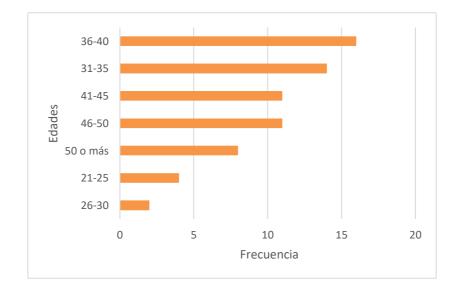

Porcentaje de anuencia de comprar de una nueva línea de chiles picantes Zamorano

En la figura 9, se muestra la preferencia de los encuestados hacía los chiles picantes que estarían dispuestos a comprar. Tal como se aprecia en la gráfica con un 18% la variedad de Jalapeño sería el chile con mayor preferencia, seguido con un 9% de la variedad Golden California, asimismo, con un 8% se encuentran las variedades de Poblano, Habanero, California Wonder, Serrano y Cayena, asimismo con un 6% la variedad de Red Cherry, con un 5% de anuencia de compra se sitúan las variedades Hungarian Hot Wax, Hungarian Sweet Wax y Anaheim y por último con 4% las variedades Cubanelle, Big Jim y Pepperoncini.

Figura 9


Porcentaje de preferencia de los encuestados de chiles picantes

Posteriormente, como se muestra en la figura 10, se midió las variables demográficas, las cuales reflejaron que el 53% de los encuestados eran mujeres, mientras que el 47% eran hombres, lo cual resulta además congruente en la actualidad ya que, las mujeres son principalmente quienes compran la despensa o los bienes de consumo para el hogar.


Figura 10

Distribución por género

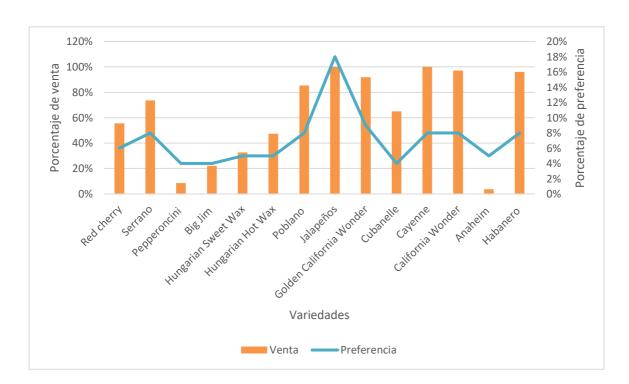

En la figura 11, se muestra la distribución de frecuencia de la edad de los encuestados. El 33% de los encuestados oscilan entre los 50 o más y 41 a 45 años, un 10% oscilan entre 31 a 35 años y 21 a 25 años, un 7% oscilan entre 36 a 40 años y por último un 3% de 26 a 30 años y 46 a 50 años.

Figura 11Distribución de frecuencia de edad de los encuestados

De igual modo, se determinó un contraste entre el porcentaje de preferencia y el porcentaje de venta real de los chiles picantes. Como se muestra en la figura 12, la línea azul representa el porcentaje de preferencia de chiles que los encuestados estarían dispuestos a comprar. Por otro lado, las barras naranjas señalizan el porcentaje de chiles que se vendieron en la práctica comercial en el supermercado Más x Menos. Por ende, se identificó que los chiles con mayor porcentaje de preferencia y de venta fueron los siguientes:

Figura 12Contraste entre el porcentaje de ventas y el porcentaje de preferencia

En el cuadro 11 pueden observarse los valores de preferencia y de porcentaje de compra de todas las variedades trasladadas al supermercado Más x Menos.

Cuadro 11

Variedades con mayor porcentaje de venta y preferencia

Variedad	Nombre	Porcentaje de venta	Porcentaje de preferencia
2	Serrano	74%	8%
7	Poblano	85%	8%
8, 15, 16	Jalapeños	100%	18%
9	Golden California Wonder	92%	9%
11	Cayenne	100%	8%
12	California Wonder	97%	8%
14	Habanero	96%	8%

Análisis Financiero

Inversión Inicial

A continuación, en este estudio se realizó un minucioso análisis, en el cual se determinó que no habría inversión inicial para poner en marcha el proyecto, debido a que las infraestructuras y los equipos requeridos se encuentran en disposición de la institución a la que va dirigida el proyecto, considerándose un costo hundido.

Costos

En el cuadro 12, se aprecian los costos variables incurridos de forma desglosada para la producción de las siete mejores variedades de chile picante en un macro túnel de 840 m2. En donde los costos más altos son los costos de agua con un monto de L. 25,500 y el costo del sustrato con un monto de L 6,000.

Cuadro 12

Costos variables requeridos por ciclo

Descripción	Unidad	Cantidad	Costo unitario	Costo total	% del Costo
Semilla	semilla	1600	L 1.26	L 2,016.00	4%
Plántula	plántula	1600	L 0.33	L 528.00	1%
Sustrato	m3	24	L 250.00	L 6,000.00	13%
Bolsas	bolsas	1600	L 1.20	L 1,920.00	4%
Sistema de riego	m	600	L 1.85	L 1,110.00	2%
Agua	m3	3000	L 8.50	L 25,500.00	53%
Fertilizantes Sulfato de Potasio Soluble	Lb	36	L 11.48	L 413.28	1%
Fertilizante Urea al 46%	Lb	20	L 11.63	L 232.60	0%
Fertilizante Nitrato de Amonio	Lb	30	L 4.41	L 132.30	0%
Fertilizante Nitrato de Calcio	Lb	40	L 13.34	L 533.60	1%
Fertilizante Nitrato de Potasio	Lb	28	L 22.67	L 634.76	1%
Fertilizante KLC soluble	Lb	30	L 10.37	L 311.10	1%
Fertilizante Sulfato de Magnesio Soluble	Lb	16	L 2.84	L 45.44	0%
Fertilizante MAP Fosfato mono amónico	Lb	26	L 11.58	L 301.08	1%
Fertilizante Vitel Kg 1 Lt Sampolk	Grs	600	L 0.15	L 90.00	0%
Fertilizante MPK 0-52-34 fosfato monopotasico	Lbs	14	L 15.96	L 223.44	0%
FertilizanteSK 30	Сс	200	L 0.64	L 128.00	0%
Insecticida Pegasus	Сс	160	L 1.81	L 289.60	1%
Insecticida Acaricida Vertimec	Сс	180	L 2.90	L 522.00	1%
Insecticida Oberon	Сс	160	L 3.11	L 497.60	1%
Insecticida Sivanto SL200	Сс	120	L 2.84	L 340.80	1%
Insecticida Zytron	Сс	140	L 0.32	L 44.80	0%
Insecticida Engeo	Сс	240	L 2.35	L 564.00	1%
Insecticida Epingle 10EC	Сс	220	L 1.98	L 435.60	1%
Insecticida Kabonm	Сс	160	L 0.43	L 68.80	0%
Insecticida Bingo	Grs	120	L 3.80	L 456.00	1%
Insecticida Magneto	Сс	200	L 1.93	L 386.00	1%
Insecticida Preza 100D	Сс	120	L 8.04	L 964.80	2%
Insecticida Tempano Gold	Сс	80	L 1.70	L 136.00	0%
Fungicida Amistar	Grs	240	L 2.86	L 686.40	1%
Fungicida Vivace	Сс	160	L 6.33	L 1,012.80	2%
Fungicida Salud	Сс	260	L 0.97	L 252.20	1%
Fungicida Agrodin	Grs	240	L 3.00	L 720.00	2%
Acaricida, Fungicida Cinnalys	Сс	800	L 0.40	L 320.00	1%
Total Costos Variables				L 47,833.80	100%

En el cuadro 13, se estiman los costos fijos incurridos de forma desglosada para la producción de los chiles picantes en un macro túnel de 840 m2. En donde el gasto más alto es el costo de estaca de madera con un monto de L 4,640. Por otro lado, entre los costos más bajos se encontró el gasto de melaza con un monto de L 19.20 y el adherente Inex con un monto de L 98.

Cuadro 13

Costos fijos requeridos por ciclo

Descripción	Unidad	Cantidad	Cost	to unitario	Costo total	% del costo
Estacas de madera	Uni	1000	L	4.64	L 4,640.00	43%
Soga plástica agrícola UV	Roll	6	L	172.00	L 1,032.00	10%
Melaza	Lbs	16	L	1.20	L 19.20	0%
Adherente Inex	Сс	700	L	0.14	L 98.00	1%
Combustible	gal	17	L	100.00	L 1,700.00	16%
Plástico mulch negro	mt	1200	L	0.20	L 240.00	2%
Imprevistos 3%					L 3,000.00	28%
Total Costos fijos					L 10,729.20	100%

En el cuadro 14, se estiman los gatos administrativos incurridos de forma desglosada para la producción de los chiles picantes en un invernadero de 840m2. En donde los gastos más altos son los pagos por mano de obra en prácticas culturales con un monto de L 19,548.16 y el transporte de comercialización con un monto de L. 20,000, el cual se instituye del 16% de los ingresos por venta.

Cuadro 14

Gastos administrativos requeridos por ciclo de producción

Descripción	Unidad	Cantidad	Cost	o unitario	Costo total	% del costo
Servicio de fertilización	Jornal	8	L	120.00	L 960.00	2%
Servicio de control de plagas y enfermedades	Jornal	15	L	120.00	L 1,800.00	4%
Servicio de control de malezas	Jornal	8	L	120.00	L 960.00	2%
Prácticas culturales	Día	46	L	424.96	L 19,548.16	45%

Descripción	Unidad	Cantidad	Costo unitario	Costo total	% del costo
Transporte (16% de ingresos)				L 20,000.00	46%
Total Gastos de operación				L 43,268.16	100%

Flujo de Caja

Se elaboró un flujo de caja con un horizonte de evaluación de 1 año sin financiamiento y con una tasa de descuento 8%.

A continuación, el cuadro 15, en el cual se aprecia detalladamente el flujo de caja que tiene este proyecto de producción de 7 variedades de chile picante con una duración de un año.

Cuadro 15 46

Flujo de caja del proyecto

Concepto	Ciclo 0	Ciclo 1	Ciclo 2	Ciclo 3	Ciclo 4	Ciclo 5	Ciclo 6	Ciclo 7	Ciclo 8
+ Ingreso por ventas		156,371	156,371	156,371	156,371	156,371	156,371	156,371	156,371
Ingreso por venta del terreno									
- Egresos deducibles de impuestos		101,831	101,831	101,831	101,831	101,831	101,831	101,831	101,831
Costos variables		47,834	47,834	47,834	47,834	47,834	47,834	47,834	47,834
Costos Fijos		53,997	53,997	53,997	53,997	53,997	53,997	53,997	53,997
Gastos financieros									
- Gastos no desembolsables									
Depreciación de activos									
Amortización de preoperativos									
= Utilidad antes de impuestos		54,540	54,540	54,540	54,540	54,540	54,540	54,540	54,540
- Impuestos (30%)									
= Utilidad después de impuestos		54,540	54,540	54,540	54,540	54,540	54,540	54,540	54,540
+ Gastos no desembolsables									
Depreciación de activos									
Amortización de preoperativos									
+ Ingresos no sujetos a impuestos									
Valor de desecho									
Recuperación del capital de trabajo									
Préstamo bancario									
- Egresos no deducibles de impuestos	101,831								-101,831
Activos (inv. 20 años, 10 años, 5 años, terreno)									
Gastos de puesta en marcha (preoperativos)									
Inversión en capital de trabajo	101,831								-101,831
Pago préstamo bancario									
= Flujo de caja	-101,831	54,540	54,540	54,540	54,540	54,540	54,540	54,540	156,371
Flujo de caja acumulado	-101,831	-47,291	7,250	61,790	116,330	170,871	225,411	279,951	436,323

Indicadores Financieros

Para el establecimiento de este estudio de producción de chiles picantes, se proyecta un valor actual neto (VAN) de L. 266,609 obtenido del flujo de caja con duración de un año. Por otro lado, el siguiente indicador del proyecto es la tasa interna de retorno (TIR) de 54%, la cual es mayor a la tasa de descuento de 8%. El otro indicador que se proyecta es el periodo de recuperación de la inversión que es de 1.87 ciclos. El ultimo indicador que se obtuvo es el índice de rentabilidad con un valor de 3.62.

Cuadro 16

Indicadores financieros del proyecto

Indicadores financieros	Valores
Valor Actual Neto (VAN)	L. 266,609
Tasa Interna de Retorno (TIR)	54%
Periodo de Recuperación de Inversión (PRI)	1.87 ciclos
Índice de rentabilidad (ID)	3.62

Análisis de Riesgo

Para el desarrollo de riesgos se utilizó el software @risk con el fin de establecer las variables de entrada junto a sus distribuciones, asimismo con las variables de salida. En el cuadro 17 y 18 se aprecian las variables de entrada, sus respectivas distribuciones, valores máximos, más probable, mínimos y variables de salida.

Como se muestra en el cuadro 17, se realizó la búsqueda de los rendimientos asociados a la producción de chile Cayenne, Habanero, Jalapeño, Poblano, California Wonder y Serrano.

Cuadro 17

Rendimientos bajo estructuras protegidas (ton/ha)

Variedad	Mínimo	Óptimo	Máximo	Densidad (plantas/ha)	
Serrano ¹	10	12	16	37000	
Poblano ²	40	60	70	16,000	
Jalapeño³	80	90	100	44400	
Golden California ⁴	75	80	90	33,500	
Cayenne ⁵	12.58	19.42	26.35	25000	
California Wonder ⁴	75	80	90	33,500	
Habanero ⁶	18.3	24	36	22,300	

Nota. Adaptado de ¹Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación y Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (2003), ²Cedillo (2021), ³Fundación Hondureña de Investigación Agrícola y Renan Marcía (2015), ⁴FHIA (2009), ⁵A. C. Martínez (2015), ⁶López Gómez et al. (2017)

En base a dichos rendimientos, en el cuadro 18 se extrapolo la cantidad de cosecha por ciclo de chile, para los macro túneles ubicados en Oleicultura Intensiva, estos poseen 840 m², con una cantidad de 1,600 plantas.

Cuadro 18

Variable de Entrada de Rendimiento @Risk y su Distribución de Probabilidad Utilizada

Variedad	Distribución	Rendimiento mínimo invernadero (Lbs)	Rendimiento óptimo invernadero (Lbs)	Rendimiento máximo invernadero (Lbs)
Serrano		218	300	360
Poblano		1260	1890	2205
Jalapeño		908	1022	1135
Golden California	Pert	1128	1204	1354
Cayenne		254	392	531
California Wonder		1128	1204	1354
Habanero		414	524	814

Para ello, se consideró los rendimientos obtenidos en condiciones de macro túneles, bajo sistemas de riego y fertilización, tal como se realiza en el área de Oleicultura Intensiva de Zamorano.

El análisis de precios se realizó bajo los precios históricos de la central de abasto de Tegucigalpa y San Pedro Sula. Debido a que distintas variedades no se encuentran en el mercado, se utilizará el precio del chile jalapeño o del chile tabasco en su defecto, para frutos de mayor valor.

Cuadro 19

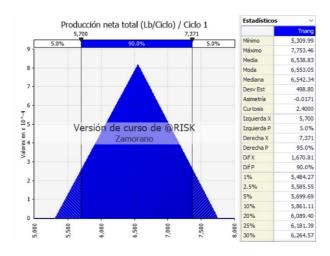
Variable de Entrada de Precio @Risk y su Distribución de Probabilidad Utilizada

Precio en Lempiras en las centrales de abasto de San Pedro Sula y Tegucigalpa							
Producto	Distribución	Unidad	Bajo	Óptimo	Alto		
Chile Tabasco		Libra	40	50	60		
Chile Jalapeño	Triangular	Libra	10	12.45	15		
Chile Morrón amarillo		libra	20.5	23.5	24		
Chile Morrón verde		Libra	20.5	23.5	24		

Nota: Adaptado de Ministerio de Agricultura y Ganadería, Sistema de Información de Mercados de Productos Agrícolas de Honduras, et al. (2022); MAG, FHIA, et al. (2022); FHIA et al. (2019)

Los costos asociados con la producción de chiles son similares, independientemente de la variedad de chile, debido a que la unidad de Oleicultura Intensiva da un manejo estándar a las plantas del mismo tipo. Se utilizaron los datos disponibles de costos, incurridos en el ensayo durante las 12 semanas y se complementaron con los costos presupuestados para la producción de chile dentro de macro túnel en Zamorano (Bolaños Gonzáles, 2018).

En el cuadro 20 se muestran las variables de salida del software @Risk. A continuación, se muestran las figuras 13, 14, 15, 16, 17, 18, 19 y 20 obtenidas al usar el software @Rissk en las variables de entrada con respecto a las variables de salida.

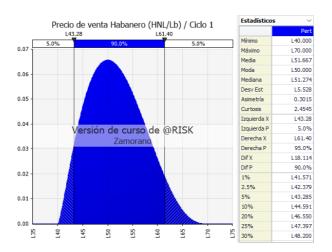

Cuadro 20

Variables de salida @Risk

	Variables de salida	
Valor Actual Neto (VAN)		
Tasa Interna de Retorno (TIR)		

En la figura 13, se muestra el nivel de producción de libras de todas las variedades para un invernadero de 840m2, el cual se realiza a través de un análisis Triangular, en el cual existe un 90% de probabilidad de que la producción se encuentre en 6,558.83 libras. Existe un 5% de probabilidad de que el primer nivel se reduzca, por ende, obtener una producción de 5,700 libras y el otro 5% de probabilidad de que el segundo nivel incremente y obtener una producción de 7,371 libras.

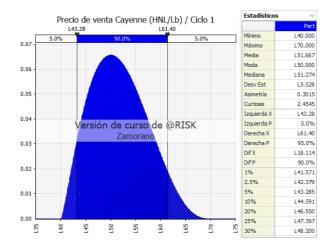
Figura 13Resultado de producción neta total



Por otro lado, en las siguientes figuras se presentan los precios de venta que tienen cada una de las variedades de chile picante. Se realizó a través de una distribución Pert.

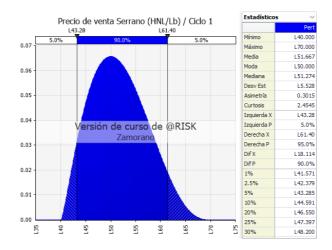
Como se muestra en la figura 14, se denota una probabilidad del 90% de que el precio de chile Habanero se encuentre entre L 43.28 y L 61.40 la libra. A su vez, existe una probabilidad del 5% de que el primer nivel se reduzca y el otro 5% de que el segundo nivel aumente.

Figura 14


Resultado precio de venta Habanero (HNL/Lb)

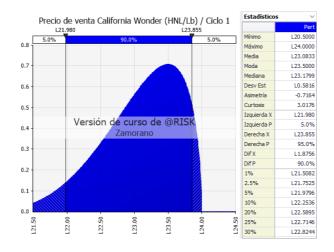
En la figura 15, se muestra que existe un 90% de probabilidad de que el precio de la variedad Cayena se encuentre entre L 43.28 y L 61.40 la libra. Existe una probabilidad del 5% de que el primer nivel se reduzca y el otro 5% de que el segundo nivel aumente.

Figura 15


Resultado de precio Cayenne (HNL/Lb)

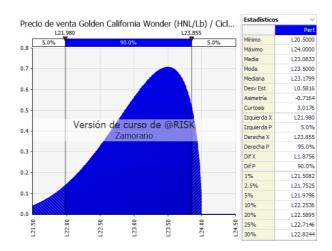
En la figura 16, se muestra que existe un 90% de probabilidad de que el precio de la variedad Serrano se encuentre entre L 43.28 y L 61.40 la libra. Existe una probabilidad del 5% de que el primer nivel se reduzca y el otro 5% de que el segundo nivel aumente.

Figura 16


Resultado de precio de venta Serrano (HNL/Lb)

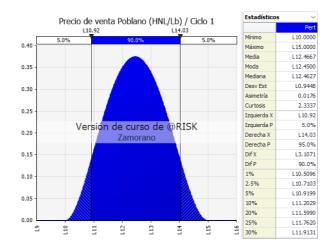
Como se muestra en la figura 17, se denota una probabilidad del 90% de que el precio de chile California Wonder se encuentre entre L 21.98 y L 23.85 la libra. A su vez, existe una probabilidad del 5% de que el primer nivel se reduzca y el otro 5% de que el segundo nivel aumente.

Figura 17

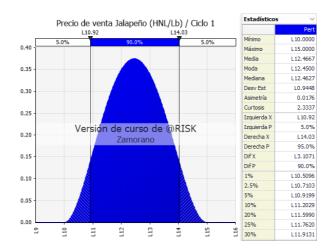

Resultado de precio de venta de California Wonder (HNL/Lb)

Como se muestra en la figura 18, se denota una probabilidad del 90% de que el precio de chile Golden California Wonder se encuentre entre L 21.98 y L 23.85 la libra. A su vez, existe una probabilidad del 5% de que el primer nivel se reduzca y el otro 5% de que el segundo nivel aumente.

Figura 18


Resultado de precio de venta de Golden California Wonder (HNL/LB)

En la figura 19, se muestra que existe un 90% de probabilidad de que el precio del chile Poblano se encuentre entre L 10.92 y L 14.03 la libra. Existe una probabilidad del 5% de que el primer nivel se reduzca y el otro 5% de que el segundo nivel aumente.


Figura 19

Resultado de precio de venta Poblano (HNL/Lb)

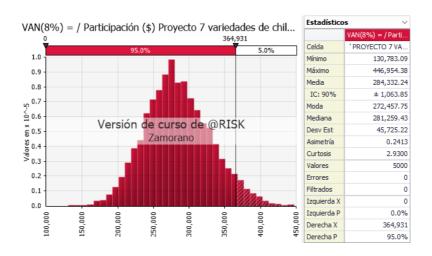

En la figura 20, se muestra que existe un 90% de probabilidad de que el precio del chile Jalapeño se encuentre entre L 10.92 y L 14.03 la libra. Existe una probabilidad del 5% de que el primer nivel se reduzca y el otro 5% de que el segundo nivel aumente.

Figura 20Resultado de precio de venta Jalapeño (HNL/Lb)

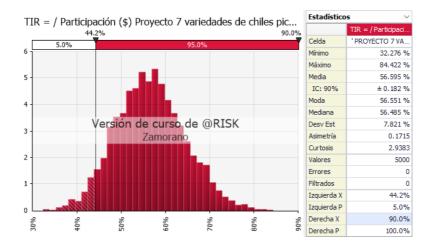

Por otro lado, en la figura 21 se aprecia que se cuenta con una probabilidad de 95% que el VAN sea L. 364,931. Por otro lado, se identificó que los valores mínimos y máximos que presenta el VAN del proyecto es de L. 130,783.09 y L. 446.954.38.

Figura 21Resultados del VAN utilizado @Risk

En la figura 22, se encuentra que el segundo indicador financiero la TIR presenta una probabilidad del 95% de que la tasa interna de retorno se encuentre entre los valores 44.2% y 90.0%.

Figura 22Resultados de la TIR utilizando @Risk

Conclusiones

Se determinó que las variedades con mayor potencial en producción son: Pepperoncini, Hungarian Hot Wax, Hungarian Sweet Wax, Jalapeño Seminis, Jalapeño Poderoso F1 y Cayenne. Por otro lado, las variedades con mayor potencial en procesamiento son: Big Jim, Poblano y Cubanelle. De igual manera, se identificó que las variedades con mayor potencial comercial son: Habanero, Jalapeño, Poblano, Cayenne, California Wonder, Golden California Wonder y Serrano.

Se realizó un flujo de caja y a través del cálculo de los principales indicadores financieros se obtuvo que el VAN del proyecto es de L. 266,609, una TIR de 54%, asimismo se registró un PRI de 1.93 ciclos. Por lo tanto, se determina que es factible y rentable llevar a cabo este proyecto.

El análisis de riesgo utilizando el programa @Risk determinó que el proyecto de producción de chiles picantes en invernadero en Zamorano tiene una probabilidad de obtener un VAN positivo de 95% y 5% de que este sea negativo o cero. Igualmente, la TIR registro un 95% de probabilidad obtener valores entre los valores 44.2% y 90.0%.

.

Recomendaciones

Llevar a cabo el proyecto con las variedades que presentan potencial comercial, ya que se concluyó que es factible.

Realizar un análisis de mercado más profundo, tomando en cuenta la recolección detallada de información primaria para conocer más al consumidor, sus preferencias con respecto a las variedades de chiles, precios del fruto, los posibles riesgos asociado al lanzamiento de la línea de chiles picantes y los posibles nichos en los que se puede incursionar con el proyecto.

Continuar el estudio con una gama de chile más picantes, con el fin de evaluar los frutos en sus respectivo espectro de producción, análisis de mercado y las alternativas de procesamiento de los chiles.

Realizar un análisis de las cinco fuerzas de Porter y un análisis FODA, con la finalidad de descubrir las debilidades que podrían no haber sido identificadas sin un diagnóstico interno. Además, pueden ayudar a identificar los factores claves para el éxito del proyecto.

Referencias

- Bae, H., Jayaprakasha, G. K., Crosby, K., Yoo, K. S., Leskovar, D. I., Jifon, J. y Patil, B. S. (2014). Ascorbic acid, capsaicinoid, and flavonoid aglycone concentrations as a function of fruit maturity stage in greenhouse-grown peppers. *Journal of Food Composition and Analysis*, *33*(2), 195–202. https://doi.org/10.1016/j.jfca.2013.11.009
- Banco Mundial. (2019). LAC Equity Lab: Designaldad Composición por Quintil.

 https://www.bancomundial.org/es/topic/poverty/lac-equity-lab1/incomeinequality/composition-by-quintile
- Benson, G., Obadofin, A. y Adesina, J. (2014). Evaluation of plant extracts for controlling insect pests of pepper (*Caspicum* spp.) in Nigeria humid rainforest. *New York Science Journal*, 7(1). https://www.academia.edu/16904466/Evaluation_of_plant_extracts_for_controlling_insect __pests_of_pepper_caspicum_spp_in_Nigeria_humid_rainforest
- Bolaños Gonzáles, F. C. (2018). Desarrollo de un plan de producción hortícola para satisfacer la demanda interna 2019 de la Escuela Agrícola Panamericana, Zamorano [Tesis]. Escuela Agrícola Panamericana, Zamorano, Honduras.
- Cázares-Sánchez, E., Ramírez-Vallejo, P., Castillo-González, F., Soto-Hernández, R.-M., Rodríguez-González, R. y Chávez-Ser, J. L. (2018). *Capsaicinoides y preferencia de uso en diferentes morfotipos de chile (Capsicum annuum L.) del centro-oriente de Yucatán.*
- Cedillo, E. (2021). Manual de Produccion de Chiles Jalapeño y Poblano Bajo Invernadero. http://planificacionfesaragon.com/sites/default/files/manuales/Manual%20de%20Producci on%20de%20Chiles%20Jalape%C3%B1o%20y%20Poblano%20Bajo%20Invernadero.pdf
- Fundación Hondureña de Investigación Agrícola (2009). Evaluación del rendimiento de chile dulce de colores en invernadero(14).

 http://www.fhia.org.hn/descargas/programa_de_hortalizas/hoja_tecnica_No_14.pdf

- Fundación Hondureña de Investigación Agrícola y Renan Marcía, J. (2015). Informe técnico: Programa de

 Hortalizas.

 http://www.fhia.org.hn/descargas/informes_tecnicos/inf_Programa_de_Hortalizas
 2014.pdf
- Fundación Hondureña de Investigación Agrícola, Sistema de Información de Mercados de Productos

 Agrícolas de Honduras, Departamento de Agricultura de los Estados Unidos y Agencia de los

 Estados Unidos para el Desarrollo Internacional (2019, febrero). Reporte quincenal de precios

 de supermercados.

 http://www.fhia.org.hn/dowloads/simpah_pdfs/5.3.TEG_SUPERMERCADO.pdf
- Hernández, J. A., Ochoa, A. A., López, E. y García, H. S. (2009). Extracción de capsaicinoides durante la deshidratación osmótica de chile Habanero en salmuera. *CyTA Journal of Food, 7*(2), 127–134. https://doi.org/10.1080/11358120902989418
- Hernández Verdugo, S. (2018). *Chile silvestre, el. Ecologia evolucion y genetica / PD*. https://www.elsotano.com/libro/chile-silvestre-el-ecologia-evolucion-y-genetica-pd 10532321
- López Gómez, J. D., Villegas-Torres, O. G., Sotelo Nava, H., Andrade Rodríguez, M., Juárez López, P. y

 Martínez Fernández, E. (2017). Rendimiento y calidad del chile habanero (*Capsicum chinense*Jacq.) por efecto del régimen nutrimental. *Revista Mexicana De Ciencias Agrícolas*, 8(8), 1747–

 1758. https://www.redalyc.org/pdf/2631/263153822009.pdf
- Martín, N. C. y González, W. G. (1991). Caracterización de accesiones de chile (*Capsicum spp*).

 **Agronomía Mesoamericana, 2(1), 31–39.

 https://dialnet.unirioja.es/servlet/articulo?codigo=5532960
- Martínez, A. C. (2015). Requerimientos nutricionales del ají Capsicum annuum L. y su relación con rendimiento bajo condiciones ambientales de Palmira, Valle del Cauca. Universidad Nacional de Colombia, Palmira, Colombia.

- https://repositorio.unal.edu.co/bitstream/handle/unal/53873/1116233280.pdf?sequence=1 &isAllowed=y
- Martínez, J. (2018). Germinación, crecimiento y desarrollo de dos chiles nativos (*Capsicum annuum* L.)

 de Oaxaca bajo invernadero.

 http://literatura.ciidiroaxaca.ipn.mx/jspui/bitstream/LITER_CIIDIROAX/356/1/San%20Juan%

 20Mart%C3%ADnez%2C%20J.%2C%202018.pdf
- Martinez Damián, M. T., Cruz alvarez, O., Del Moreno Perez, E. C. y Valle Guadarrama, S. (2019).

 Intensidad De Color Y Compuestos Bioactivos En Colectas De Chile Guajillo Del Norte De México. Revista Mexicana de Ciencias Agrícolas, 10(1), 35–49.

 https://doi.org/10.29312/remexca.v10i1.465
- Méndez, M. A., Ligarreto, G. A., Hernández, M. S. y Melgarejo, L. M. (2004). Evaluación del crecimiento y determinación de índices de cosecha en frutos de cuatro materiales de ají (*Capsicum* sp.) cultivados en la Amazonía colombiana. *Agronomía Colombiana*, 22(1), 7–17. https://www.redalyc.org/pdf/1803/180317823002.pdf
- Ministerio de Agricultura y Ganadería, Fundación Hondureña de Investigación Agrícola, Sistema de Información de Mercados de Productos Agrícolas de Honduras y Agencia de los Estados Unidos para el Desarrollo Internacional (2022, junio). Reporte diario precios hortalizas, Zonal Belén: Ciudad Tegucigalpa.
- Ministerio de Agricultura y Ganadería, Sistema de Información de Mercados de Productos Agrícolas de Honduras, Fundación Hondureña de Investigación Agrícola y Agencia de los Estados Unidos para el Desarrollo Internacional (2022, junio). Reporte diario, precios hortalizas, Central Abastos: Ciudad San Pedro Sula. http://www.fhia.org.hn/descargas/simpah/2.1._reporte_diario_precios_hortalizas_central_abastos.pdf

- Molina, J., Mendez, C. y González, W. (1994). Evaluación del desarrollo, rendimiento y calidad del producto de 16 introducciones de chile picante (*Capsicum spp*) en Guancaste, Costa Rica. *BOLTEC*, 27(1), 59–66. https://www.kerwa.ucr.ac.cr/bitstream/handle/10669/78774/Molinachile pic.pdf?sequence=1&isAllowed=y
- Randall, G. (2000). *Trade marketing strategies: The partnership between manufacturers, brands and retails* (2nd ed.). *The Marketing series*. Butterworth Heinemann.
- Secretaría de Agricultura, Ganadería, Desarrollo Rural, Pesca y Alimentación y Instituto Nacional de Investigaciones Forestales, Agrícolas y Pecuarias (2003). El cultivo del chile Serrano en la zona media de San Luis Potosí. http://www.inifapcirne.gob.mx/Biblioteca/Publicaciones/125.pdf
- Tian, S.-L., Lu, B.-Y., Gong, Z.-H. y Shah, S. N. M. (2014). Effects of drought stress on capsanthin during fruit development and ripening in pepper (*Capsicum annuum* L.). *Agricultural Water Management*, 137, 46–51. https://doi.org/10.1016/j.agwat.2014.02.007
- Unión Europea y Junta de Andalucia (2013). La cadena de valor de los Productos Alimentarios.

 https://www.juntadeandalucia.es/defensacompetencia/sites/all/themes/competencia/files/

 Estudio Metodologico Cadena de Valor O.pdf
- Vázquez-Flota, F., Miranda-Ham, M., Monforte-González, M., Gutiérrez-Carbajal, G., Velázquez-García, C. y Nieto-Pelayo, Y. (2007). La biosíntesis de capsaicinoides, el principio picante del chile. *Revista Fitotecnia Mexicana*, *30*(353-360).

Anexos

Anexo A

Croquis de ensayo de producción de chiles picantes, EAP Zamorano

Bloque 1		E	Bloque 2		Bloque 3	Blo	Bloque 4	
Tratamiento	# de plantas							
6	12	4	12	9	14	1	10	
10	14	7	12	11	12	3	14	
14	12	12	12	13	12	5	12	
16	16	15	12	8	12	2	12	
9	12	14	12	10	12	4	10	
1	8	11	12	12	10	6	14	
13	14	16	18	15	12	7	12	
3	14	5	12	14	14	9	12	
8	12	2	12	16	18	11	12	
12	12	6	12	1	10	13	12	
4	12	10	12	3	14	8	14	
15	14	13	14	5	12	10	12	
7	12	9	12	2	12	12	10	
11	12	8	14	4	12	15	12	
5	12	3	12	6	12	14	14	
2	12	1	10	7	12	16	18	

Anexo B

Banner de información de la pungencia de las dieciséis variedades de chiles

Anexo C

Peso por presentación de productos no combinados

Producto	Presentación	Peso (lb)
Chile dulce	Bolsa	2
Chile Dulce	Cesta	15
Chile morrón/Nataly	Malla	2

Fuente: (Canales, 2018).

Anexo D

Stand de las variedades de chile picantes en el Supermercado Más x

Menos

Anexo E

Datos para plan de siembra de chile jalapeño. Nombre común: Chile jalapeño

Cultivo	Nombre científico		Capsicum annum
Familia	Solanaceae		
Tiempo	Días a germinación		10
Días a trasplante		30	
Días a cosecha		70	
Suelo	Textura		Franco-Franco arenoso
рН		6.5-7	
Profundidad		0.30	
Rendimiento	Kg/planta		1.50
Plantas/ha		44,444	
Kg/ha		66,667	
Merma (%)	Germinación		0.90
Sobrevivencia en campo		0.90	
Rendimiento en poscosecha		0.95	
Clima	MSNM		60-1600
Precipitación (mm/año)		0-1200	
Temperatura (°C)		20-29	
Cama	Altura (m)		0.40
Ancho (m)		1	
Distancia entre camas (m)		1.50	
Distancia entre plantas (m)		0.30	
No. de hileras		2	
Distancia entre hileras (m)		0.40	
Siembra	Tipo de siembra		Trasplante
Método de siembra		Cuadrado	
Semilla		Sexual	
Cosecha	Semanas de cosecha		16
Semanas de almacenamiento		2	

Anexo F

Datos para plan de siembra de chile morrón. Nombre común: Chile morrón

Cultivo	Nombre cientí	fico	Capsicum annuum
Familia		Solanaceae	
Tiempo	Días a germina	ación	10
Días a trasplante		30	
Días a cosecha		90	
Suelo	Textura		Franco Arenoso
рН		5.5-7	
Profundidad		0.40	
Rendimiento	Kg/planta		3.02
Plantas/ha		25,000	
Kg/ha		75,500	
Merma (%)	Germinación		0.90
Sobrevivencia en campo		0.90	
Rendimiento en poscosecha		0.95	
Clima	MSNM		0-2300
Precipitación (mm/año)		600-1200	
Temperatura (°C)		15-30	
Cama	Altura (m)		0.40
Ancho (m)		1	
Distancia entre camas (m)		2.00	
Distancia entre plantas (m)		0.40	
No. de hileras		2	
Distancia entre hileras (m)		0.40	
Siembra	Tipo de siemb	ra	Trasplante
Método de siembra		Cuadrado	
Semilla		Sexual	
Cosecha	Semanas de cosecha		16
Semanas de almacenamiento		2	