Diseño de un sistema de riego por goteo para piñón (*Jatropha curcas*) en Zamorano, Honduras

Denison Andrés Dávila Lara Iván Andrés Guevara Granda

Escuela Agrícola Panamericana, Zamorano Honduras

Noviembre, 2014

ZAMORANO CARRERA DE INGENIERÍA AGRONÓMICA

Diseño de un sistema de riego por goteo para piñón (*Jatropha curcas*) en Zamorano, Honduras

Proyecto especial de graduación presentado como requisito parcial para optar al título de Ingenieros Agrónomos en el grado

Académico de Licenciatura

Presentado por

Denison Andrés Dávila Lara Iván Andrés Guevara Granda

Zamorano, Honduras

Noviembre, 2014

Diseño de un sistema de riego por goteo para piñón (Jatropha curcas) en Zamorano, Honduras

Denison Andrés Dávila Lara Iván Andrés Guevara Granda

Resumen: el objetivo fue diseñar un sistema de riego por goteo para un área de 10.8 ha para producción de piñón, ubicada en el lote Zavala, Santa Inés, la Escuela Agrícola Panamericana, Honduras. Se dividió el terreno en dos lotes uno y dos, de 7.6 ha y 3.2 ha, según las dos texturas predominantes, franco arenosa y franco arcillosa, respectivamente. El cultivo está sembrado con un distanciamiento de tres metros entre hileras y dos metros entre plantas y tiene cuatro años de edad. La fuente de agua es el trasvase de la microcuenca Santa Inés, con un caudal aproximado de 20 L/s en época seca y 50 L/s en época lluviosa. La máxima evapotranspiración del cultivo (ETc) fue de 4.8 mm/día. Se diseñaron laterales dobles para cada hilera de plantas con cuatro goteros por planta. Dichos goteros tienen un caudal de 8 y 2.6 L/h para los lotes uno y dos, respectivamente, por la diferencia en textura. Se diseñó una programación de riego donde se cubre la totalidad del terreno en dos días máximo, con ocho turnos de riego, con una duración de aproximadamente una hora cada turno para no sobrepasar el caudal disponible de 72 m3/h. La inversión en sistema de riego y establecimiento del cultivo tiene un costo total de \$ 34,469. Se calculó el valor actual neto (VAN) y la tasa interna de retorno (TIR) para determinar la factibilidad del proyecto, obteniendo US\$96,385 y 22% respectivamente. En estas condiciones es económicamente factible la implementación del sistema de riego.

Palabras clave: Caudal, coeficiente del cultivo (Kc), evapotranspiración de referencia (ETo), evapotranspiración del cultivo (ETc).

Abstract: the objective was to design a drip irrigation system for an area of 10.8 ha for production of Jatropha curcas, located in the farm known as Zavala, Santa Inés, University of Zamorano, Honduras. The field was divided into two parcels, one and two, of 7.6 ha and 3.2 ha, as the two dominant textures, sandy loam and clay loam, respectively. The crop is planted with a spacing of 3 m between rows and 2 m between plants and is four years old. The water source is the water transfer pipe from the Santa Inés watershed, with an approximate flow rate of 20 L/s in the dry season and 50 L/s in the rainy season. The maximum crop evapotranspiration (ETc) was 4.8 mm/day. Double laterals were designed for each row of plants with four emitters per plant. These drippers have a flow rate of 8 and 2.6 L/h for the parcels one and two, respectively, because of the difference in texture. An irrigation schedule was designed to irrigate the entire field in two days maximum, with eight irrigation shifts with a duration of approximately an hour each, not to exceed the available flow of 72 m³/h. The irrigation system has a total cost of \$ 34,469. The net present value (NPV) and internal rate of return (IRR) was calculated to determine the feasibility of the project, earning US\$ 96,385 and 22% respectively. Under these conditions it is economically feasible to implement the irrigation system.

Key words: Crop coefficient (Kc), evapotranspiration of the crop (ETc), flow, reference evapotranspiration (ETo).

CONTENIDO

	Portadilla Página de firmas	i
	Página de firmas	ii
	Resumen	
	Contenido	
	Índice de cuadros	V
1	INTRODUCCIÓN	1
2	MATERIALES Y MÉTODOS	3
3	RESULTADOS Y DISCUSIÓN	14
4	CONCLUSIONES	30
5	RECOMENDACIONES	31
6	LITERATURA CITADA	32
7	ANEXOS	33

ÍNDICE DE CUADROS, FIGURAS Y ANEXOS

Cuadr	os	Página
1.	Kc para la primera etapa del piñón	. 6
2.	Kc para la segunda y tercera etapa del piñón	
3.	Tipo de filtro según los sólidos suspendidos totales	
4.	Análisis de sólidos suspendidos totales de la fuente Santa Inés y el trasvase	
5.	Alturas críticas y distancia a la fuente del lote	
6.	Análisis de textura	
7.	Parámetros físicos promedio del suelo	
8.	Promedio anual de los factores climáticos	
9.	ETo (mm/día) de promedios diarios por periodos para Zamorano, Honduras	
	(2005 - 2013)	
10.	ETc para la primera etepa de establecimiento del cultivo	. 21
11.	ETc para la segunda y tercera etapa	. 23
12.	Parámetros de diseño para la primera etapa del cultivo	. 25
13.	Parámetros de diseño para la segunda y tercera etapa del cultivo	. 26
14.	Factores que influyen en el cálculo de la CDT	. 27
15.	Carga Dinámica Total	. 28
16.	Programación de riego	. 29
17.	Programación de riego por turno	. 29
18.	Presupuesto de la implementación del sistema de riego en las 10.8 ha	. 30
Figura	as	Página
1.	Lote Zavala	. 3
2.	Sistema de trasvase de 6.2 km proveniente de la microcuenca de Santa	
	Inés, valle del Yeguare, Departamento Francisco Morazán, Honduras	
3.	Caudal de la microcuenca Santa Inés y el trasvase	
4.	Årea del lote Zavala	
5.	ETo promedio diario mensual del 2005 -2013	
6.	Diseño del sistema de riego	. 28

Anexo	os estados esta	Página
1.	Mapa de curvas a nivel	. 34
2.	Mapa de distribución de lotes	. 35
3.	Cotización	. 36
4.	Mapa de texturas Lote Zavala	. 38
5.	Análisis financiero para el cultivo de piñón	. 39
6.	Resultado de las calicatas	. 40

1. INTRODUCCIÓN

El mundo contiene cerca de 45,000 km³ de agua dulce, teóricamente. De ésta solo de 9,000 a 14,000 km³ están disponibles para beber, higiene, industrias y la agricultura. La agricultura es el mayor demandante de dicho recurso, con casi el 70% de su consumo. Para producir 1 kg de cereales se necesita 1.5 toneladas de agua y hacen falta cerca de 3,000 litros de agua para producir los alimentos que una persona consume al día. Para poder afrontar esta creciente población, alimentos y recursos hídricos, se deberá hacer un uso eficiente del agua ya que cada día es más escasa. La producción de alimentos bajo riego aumentará un 8% en el 2050 pero el agua utilizada solo aumentará un 10% gracias a las mejoras en eficiencia de uso de sistemas de riego (FAO 2014).

En todo el mundo, el riego por goteo o localizado es visto como una importante herramienta para incrementar la producción en los cultivos agrícolas, maximizando la eficiencia en el uso de los recursos hídricos ya que nos permite aplicar agua directamente a la raíz en forma de gotas minimizando pérdidas por evaporación y percolación.

Los sistemas de riego por goteo son apropiados para terrenos irregulares con texturas no uniformes o si el agua es escasa o costosa; sirven también para una aplicación más precisa de los fertilizantes y agroquímicos ya que van diluidos directamente a la raíz y no permite que tenga contacto con el follaje, tallos y frutos, evitando así el desarrollo de algunas enfermedades y el crecimiento excesivo de malezas (Shock y Welch 2013).

El piñón, *Jatropha curcas*, es una especie multipropósito, con innumerables atributos y un potencial considerable. Es una planta de origen tropical, de la familia *Euphorbiaceae*, que puede crecer tanto en zonas de altas como de bajas precipitaciones anuales. Es altamente resistente a la sequía y se puede cultivar en áreas marginales, por lo que resulta excepcional para la recuperación de tierras degradadas, sin competir con la producción de cultivos para la alimentación humana y animal (Toral *et al.* 2008).

La planta se desarrolla y puede sobrevivir con precipitaciones desde 300 milímetros al año; en condiciones normales con precipitaciones anuales bien distribuidas entre 800 y 1,200 milímetros. Si los suelos cuentan con buena capacidad de infiltración y/o drenaje puede soportar precipitaciones de 2,500 milímetros al año. Se puede cultivar sin necesidad de riego aunque su rendimiento es bastante menor que cuando se aplican riegos periódicos (Oyuela *et al.* 2012).

El Zamorano cuenta con un área de 10.8 hectáreas sembradas de piñón, con una edad de cuatro años; esta área se encuentra actualmente sin un sistema de riego. La carrera de Ingeniería Agronómica está a cargo de la investigación de densidades óptimas para la

producción comercial, la investigación del comportamiento del cultivo y como banco de germoplasma, que alberga alrededor de 100 variedades de diferentes países, como Brasil, India y Centro América. La fruta es secada, despulpada y procesada para la producción de biodiesel por parte de la carrera de Agroindustria.

Los objetivos:

- Diseñar un sistema de riego por goteo que cubra las necesidades hídricas del cultivo de piñón, *Jatropha curcas* en Zamorano, Honduras.
- Determinar la rentabilidad de la implementación del sistema de riego en piñón, Jatropha curcas en condiciones dadas, a través del cálculo del valor actual neto (VAN) y la tasa interna de retorno (TIR).

2. MATERIALES Y MÉTODOS

Ubicación. Lote de cultivos extensivos, Zavala, en Santa Inés, está a una altura de 779 msnm, tiene una precipitación promedio anual de 1154 mm y se encuentra a cuatro kilómetros vía a Güinope desde la Escuela Agrícola Panamericana, Zamorano, Honduras (Figura 1).

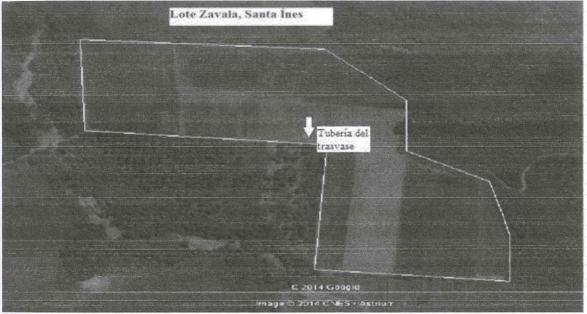


Figura 1. Lote Zavala.

Fuente de agua. La fuente es la microcuenca de Santa Inés que está ubicada a 850 msnm y pertenece a la Escuela Agrícola Panamericana. Se tomaron los datos medidos por Ricardo Vinueza (2009).

Calidad. Se recolectaron muestras de agua en la fuente para determinar la cantidad de sólidos suspendidos totales. Con estos datos se determinó el sistema de filtrado a usar y si la fuente necesita de tratamiento.

Topografía del lote Zavala.

Planimetría. Se delimitó el área de cultivo para el diseño del sistema de riego por medio de un GPS de marca Garmin modelo GPSmap 76CS; con esta información se elaboró un mapa por medio de AutoCAD 2013.

Altimetría. Se tomaron puntos a 30 × 30 m en todo el lote para determinar las diferencias de altura. Se realizó un mapa de curvas a nivel.

Suelo.

Textura. Para determinar la textura se realizaron 120 barrenaciones a un metro de profundidad o hasta alcanzar roca, distribuidas en forma de cuadriculas a 30 × 30 metros, luego se texturizó por el método del tacto. Se escogieron las áreas con familias representativas y se recolecto muestras a 30 cm de profundidad para determinar la textura por el método de Bouyoucos.

Estructura. Se realizaron calicatas distribuidas según las familias texturales obtenidas del análisis de textura. A través de las calicatas se determinó las propiedades físicas y morfológicas del suelo.

Infiltración básica. No se pudo medir por la época lluviosa y se tomó de la literatura dependiendo de las texturas encontradas en el lote.

Clima. El clima es un factor determinante en el riego ya que tiene un impacto muy grande sobre el consumo de agua de los cultivos. Se usaron los datos promedio (2009 – 2013) de temperatura; humedad relativa, viento y precipitación medidos por la estación climatológica Davis Vantage PRO 2 PLUS de la unidad de Maquinaria y Riego de Zamorano. Todos estos factores influyen en la evapotranspiración del cultivo de referencia (ETo). Se obtuvieron los promedios de la estación climatológica del Zamorano del 2005 al 2013.

Cultivo. El cultivo de piñón tiene tres etapas vegetativas que son:

• Primera etapa: comienza desde el establecimiento del cultivo hasta su primera floración dos años y medio después de la siembra, bajo condiciones favorables.

- Segunda etapa: comienza desde la primera floración después del segundo año de establecido; está relacionada con las primeras lluvias. La floración se prolonga a partir de brotes nuevos durante 90 días y bajo condiciones favorables florece nuevamente; esto significa que en una planta se encuentran flores, flores tiernas, frutos verdes y frutos maduros.
- Tercera etapa: comienza en la época seca o verano, con el fin de la cosecha y caída de las hojas. En esta etapa se realizan podas de formación previo al desarrollo vegetativo que se da en la época seca.

Evapotranspiración del cultivo (ETc). Se calculó la ETc semanal utilizando el Coeficiente del Cultivo (kc) para cada etapa vegetativa y la ETo. Con la fórmula propuesta por La Organización de las Naciones Unidas para la Alimentación y la Agricultura (FAO) donde:

$ETc = ETo \times Kc$ [1]

Donde:

ETo = Evapotranspiración de referencia (mm/día).

• Kc = Coeficiente del cultivo (adimensional).

Se modificó el Kc, tomándolo del estudio realizado en Pradesh, India adaptándolo a las condiciones naturales en el valle del Yeguare, el cual posee las mismas condiciones de radiación solar y precipitación distribuida en diferentes meses. El Kc para la primera etapa se muestra en el Cuadro 1; para la segunda y tercera etapa se muestra en el Cuadro 2.

En la época seca el cultivo demanda mayor cantidad de agua, debido a que necesita suplir sus necesidades hídricas en su etapa de crecimiento vegetativo. En la época lluviosa debido a las altas precipitaciones, la demanda es más baja.

Cuadro 1. Kc para la primera etapa del piñón.

Mes	Época	Kc
Enero	Seca	1.0
Febrero	Seca	1.0
Marzo	Seca	1.1
Abril	Seca	1.0
Mayo	Lluviosa	0.6
Junio	Lluviosa	0.6
Julio	Lluviosa	0.5
Agosto	Lluviosa	0.4
Septiembre	Lluviosa	0.5
Octubre	Lluviosa	0.8
Noviembre	Seca	0.8
Diciembre	Seca	0.9

Cuadro 2. Kc para la segunda y tercera etapa del piñón.

Mes Época		Etapa	Kc
Enero	Seca	Desarrollo vegetativo	0.6
Febrero	Seca	Desarrollo vegetativo	0.5
Marzo	Seca	Desarrollo vegetativo	0.4
Abril	Seca	Floración	0.6
Mayo	Lluviosa	Floración	0.6
Junio	Lluviosa	Fructificación	0.7
Julio	Lluviosa	Fructificación	0.7
Agosto	Lluviosa	Fructificación/Floración	0.8
Septiembre	Lluviosa	Floración	0.9
Octubre	Lluviosa	Floración	0.8
Noviembre	Seca	Fructificación	0.7
Diciembre	Seca	Fructificación	0.7

Fuente: (Kaushal y Suhas 2013). Adaptado por el autor.

Cálculo de parámetros de diseño.

Agua Disponible (AD). Es el agua capilar que se encuentra entre capacidad de campo y marchitez permanente expresada como porcentaje del volumen del suelo.

$$AD = (H_{CC}-H_{PMP}) \times Pea [2]$$

Donde:

- AD = Porcentaje de agua disponible basado en volumen.
- H_{CC} = Porcentaje de agua a Capacidad de Campo basado en peso seco.
- H_{PMP} = Porcentaje de agua en Punto de Marchitez Permanente basado en peso seco.
- Pea = Peso específico aparente (g/cm³).

Lámina de agua disponible a la profundidad radicular efectiva del cultivo (LD zr). Es la lámina de agua disponible a la profundidad efectiva de las raíces del cultivo, es expresada en mm.

$$LD_{zr} = AD \times 10 \times zr$$
 [3]

Donde:

- LD zr = Lámina de agua disponible a la profundidad radicular efectiva del cultivo (mm/zr).
- AD = Agua disponible (%).
- zr = Profundidad radicular efectiva del cultivo (m).

Lámina de agua aprovechable a la profundidad radicular efectiva del cultivo (LA zr). La lámina de agua aprovechable por la planta en su profundidad radicular efectiva.

$$LA_{zr} = LD \times \%AA$$
 [4]

Donde:

- LA zr = Lámina de agua aprovechable a la profundidad radicular efectiva del cultivo (mm/zr).
- LD zr = Lámina de agua disponible a la profundidad radicular efectiva del cultivo (mm/zr).
- % AA = % de agua aprovechable.

Diámetro del bulbo de humedecimiento. Es el diámetro del bulbo generado por las gotas de agua provenientes del gotero, el cual está condicionado por la estructura y textura del suelo, así como por el caudal del gotero y el tiempo de riego.

$$d = \left(\frac{q_e}{0.785 \times Ib}\right)^{0.5} [5]$$

Donde:

- d = Diámetro del bulbo humedecido (m).
- q_e = Caudal del emisor (L/h).

Ib = Infiltración básica (mm/h).

Porcentaje de área bajo riego (PAR). Es la relación entre el área humedecida y el área total bajo riego expresada en porcentaje.

$$PAR = \frac{(\pi \times r^2)}{(d_e \times d_l)} \times 100 \quad [6]$$

Donde:

PAR = Porcentaje de área bajo riego. r = Radio del bulbo humedecido (m).

= Distancia entre laterales (m).

= Distancia entre emisores (m).

Precipitación horaria del sistema (Phr). Es la lámina de agua que se precipita en una hora en un área determinada expresado en mm/h.

$$Phr = \frac{(q_e \times 100)}{(d_e \times d_l \times PAR)} \times 100 \quad [7]$$

Donde:

Phr = Precipitación horaria del sistema (mm/h).

= Distancia entre emisores (m). d_{e}

= Distancia entre laterales (m).

= Caudal del emisor (L/h). • qe

= Porcentaje de área bajo riego. PAR

Intervalo de riego (Ir). Es el tiempo expresado en días que hay entre dos riegos continuos.

$$Ir = \frac{(LA_{zr} \times PAR)}{(ETc \times 100)} \quad [8]$$

Donde:

Ir = Intervalo de riego (días).

= Lámina de agua aprovechable a zr (mm/zr).

PAR = Porcentaje área bajo riego.

Ciclo de riego (CR). Es el número íntegro de días durante el cual se riega un área determinada. Se debe incluir factor de seguridad.

$$CR = Ir_{aj} - dp$$
 [9]

Donde:

Ir ai = Intervalo de riego ajustado (días).

• CR = Ciclo de riego (días).

• dp = Días de paro.

Lámina de riego ajustada (LR aj). Es la lámina de agua que se debe reponer por cada ciclo de riego, tomando en cuenta la ETc del cultivo y el intervalo de riego ajustado.

$$LR_{aj} = \frac{(Ir_{aj} \times ETc \times 100)}{PAR} \quad [10]$$

Donde:

LR aj = Lámina de riego ajustada (mm).

• Ir aj = Intervalo de riego ajustado (días).

• ETc = Evapotranspiración del cultivo (mm/día).

PAR = Porcentaje de área bajo riego.

Porcentaje de agua aprovechada, ajustada (PA aj).

$$PA_{aj} = \frac{(IR_{aj} \times 100)}{LD_{zr}} \quad [11]$$

Donde:

PA aj = Porcentaje agua aprovechada, ajustada.

LR aj = Lámina de riego ajustada, (mm).

• LD zr = Lámina agua disponible en zona radicular, (mm/zr).

Lámina bruta (LB). Cada método de riego tiene su eficiencia. De acuerdo a la lámina de riego ajustada y a la eficiencia del sistema de riego se determinó la lámina de riego bruta.

$$LB = \frac{(IR_{aj} \times 100)}{Eficiencia} \quad [12]$$

Donde:

• LB = Lámina bruta (mm).

LR aj = Lámina de riego ajustada (mm).

Volumen de riego bruto (DB). Es el volumen de agua por aplicar por unidad de superficie bruta.

$$DB = \frac{(LB \times PAR)}{10} \quad [13]$$

Donde:

• DB = Volumen o dosis bruta (m³/ha).

• LB = Lámina bruta (mm).

• PAR = Porcentaje de área bajo riego.

Horas de riego por turno (Ht). Es el tiempo requerido, en horas, para aplicar, por medio del emisor seleccionado, la lámina bruta, depende de la precipitación horaria del sistema.

$$Ht = \frac{LB}{Phr} \quad [14]$$

Donde:

• Ht = Horas de riego por turno.

• LB = Lámina bruta (mm).

• Phr = Precipitación horaria del sistema de riego (mm/h).

Máximo número de turnos de riego diarios (Td). Es el máximo número de turnos que es posible operar el sistema de riego diariamente. Siempre se redondea para abajo.

$$Td = \frac{Hm}{Ht} \quad [15]$$

Donde:

• Td = Turnos diarios.

• Hm = Horas de riego máximas al día.

• Ht = Horas de riego por turno.

Horas de riego diario (Hd). Es el total de horas que se riegan al día.

$$Hd = Td \times Ht$$
 [16]

Donde:

- Hd = Horas de riego diarias.
- Td = Turnos por día.
- Ht = Horas de riego por turno.

Horas de riego por ciclo (Hc). Es el número de horas de operación del sistema de riego durante el ciclo de riego.

$$Hc = CR \times Hd$$
 [17]

Donde:

- Hc = Horas de riego por ciclo.
- CR = Ciclo riego (días).
- Hd = Horas de riego diarias.

Número de turnos por ciclo (Tc). Es el total de turnos de riego que se hacen durante un ciclo de riego.

$$Tc = CR \times Td$$
 [18]

Donde:

- Tc = Turnos de riego por ciclo.
- CR = Ciclo riego (días).
- Td = Turnos por día.

Superficie de riego por turno (St). Se obtiene dividiendo el área neta bajo riego en la parcela entre el número de turnos.

$$St = \frac{Sr}{Tc} \quad [19]$$

Donde:

- St = Superficie por turno (ha/turno).
- Sr = Superficie total.
- Tc = Turnos de riego por ciclo.

Caudal requerido (Q_r). Es el caudal que se necesita para regar 10.8 hectáreas.

$$Q_{r} = \frac{DB_{t}}{Ht} \quad [20]$$

Donde:

• Q_r = Caudal requerido (m^3/h) .

• DB_t = Dosis de riego bruta por turno (m³/turno).

• Ht = Horas de riego por turno.

Diseño.

Sistema de bombeo. Se seleccionó la bomba que satisfaga la demanda de presión y caudal en los puntos más críticos del sistema de riego. La potencia teórica de la bomba se calculó con la fórmula:

$$P = \frac{(Q \times CDT)}{(76 \times 1)} \qquad [21]$$

Donde:

• P = Potencia teórica de la bomba en caballos de fuerza.

• Q = Caudal requerido (L/s).

• CDT = Carga dinámica total (m.c.a).

• Π = Eficiencia de la bomba en tanto por uno.

Sistema de filtrado. El sistema de filtrado nos servirá para separar las partículas físicas no deseadas en el agua para el correcto funcionamiento del sistema de riego. Se seleccionó el tipo de filtro con base en la concentración de sólidos suspendidos totales en el Cuadro 3 y la recomendación del fabricante del emisor seleccionado.

Cuadro 3. Tipo de filtro según los sólidos suspendidos totales.

Sólidos suspendidos totales (ppm)	Filtro
>300	Decantar
200 - 300	Arena
100 - 200	Anillos
<100	Malla

Fuente: Del Campo Soluciones Agrícolas.

Tuberías y accesorios. Se usó tuberías primarias y secundarias de PVC que conducen el agua desde la fuente hasta los laterales de riego, el diámetro y grosor se determinó de acuerdo al caudal y presión necesarios para el sistema, además se usaron codos, válvulas, adaptadores hembra y macho, manómetros, tees, tapones, laterales de riego y goteros.

Emisor. El emisor es el encargado de distribuir el agua a las raíces del cultivo. Se determinó el emisor dependiendo de la necesidad hídrica del cultivo, la profundidad y diámetro que alcancen las raíces, tomando en cuenta la infiltración básica y propiedades físicas del suelo.

Carga dinámica total (CDT). Es la sumatoria de la altura dinámica de succión, altura dinámica de descarga y presión de operación. La pérdida por fricción en la tubería se calculó con la fórmula de Hazen y Williams donde:

$$\mathbf{H}_{\rm f} = \frac{0.090194 \times \left(\frac{100}{\rm C}\right)^{1.852} \times \mathrm{Q}^{1.852}}{\mathrm{d}^{4.866}}$$
 [22]

Donde:

• H_f = Pérdida de presión (PSI/100 pies).

• C = Coeficiente de rugosidad de la tubería.

• Q = Caudal (gpm).

• d = Diámetro interno de la tubería (pulgadas).

Análisis financiero.

Valor actual neto (VAN). Proporciona una medida de la rentabilidad del proyecto analizado en valor absoluto, es decir expresa la diferencia entre el valor actualizado de las unidades monetarias cobradas y pagadas.

VAN =
$$-A+Q\left[\frac{(1+k)^n-1}{(1+k)^n+k}\right]$$
 [23]

• K = Tipo de descuento.

• N = Número de años, vida de la inversión.

• A = Desembolso inicial.

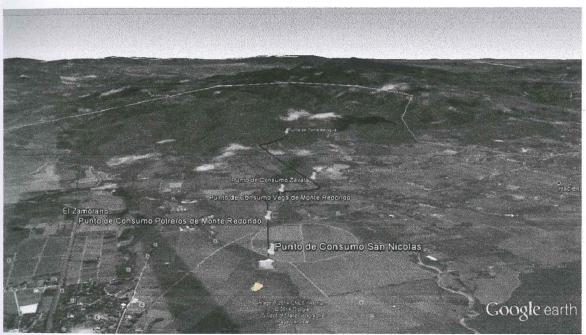
Q1, Q2....Qn = Flujos netos de caja de cada período.

(Iturrioz del campo, n.d)

Tasa interna de retorno (TIR). Es el método de valoración de inversiones que mide la rentabilidad de los cobros y pagos actualizados, generados por una inversión, en porcentaje.

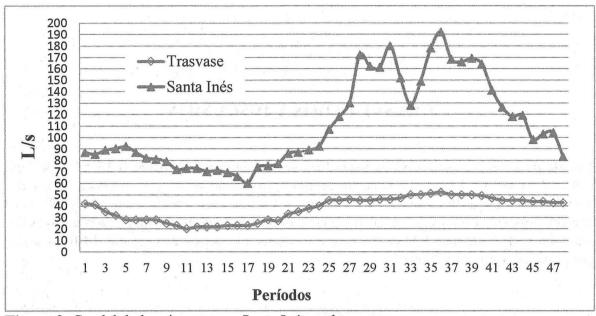
$$-A + \frac{Q_1}{(1+r)} + \frac{Q_2}{(1+r)^2} + \dots + \frac{Q_n}{(1+r)^n} = 0$$
 [24]

r = La tasa de retorno o TIR que en este caso es la incógnita.


• A = Desembolso inicial.

Q1, Q2.....Qn = Flujos netos de caja de cada período.

(Iturrioz del campo, n.d)


3. RESULTADOS Y DISCUSIÓN

Fuente de agua. La microcuenca Santa Inés se encuentra a 850 msnm, a 13°58'52.43" N y 86°57'53.48" O (Figura 2), tiene un caudal aproximado de 65 L/s en época seca y de 150 L/s en época lluviosa de los cuales se captan aproximadamente 20 y 50 L/s, respectivamente, a través de un canal superficial de 300 m de largo, luego pasa a través de una tubería de PVC de 20.32 cm de diámetro y seis kilómetros de longitud. El flujo se da por gravedad (Vinueza 2009).

Figura 2. Sistema de trasvase de 6.2 km proveniente de la microcuenca de Santa Inés, valle del Yeguare, Departamento Francisco Morazán, Honduras.

Caudal y disponibilidad. En la Figura 3 se observa la fluctuación del caudal de Santa Inés y el caudal del trasvase, en L/s para 48 períodos (cuatro por mes) de siete u ocho días a lo largo del año 2009.

Figura 3. Caudal de la microcuenca Santa Inés y el trasvase. Fuente: (Vinueza 2009).

Calidad. Los valores de sólidos suspendidos totales son mínimos, sin embargo, el fabricante del emisor recomienda usar filtros de anillos de 130 micrones. En el Cuadro 4 se pueden observar los valores de sólidos suspendidos totales encontrados en la fuente y el trasvase.

Cuadro 4. Análisis de sólidos suspendidos totales de la fuente Santa Inés y el trasvase.

Lugar de recolección	sólidos suspendidos totales (ppm)		
Fuente Santa Inés	3.5		
Trasvase	3.7		

Topografía del lote Zavala.

Planimetría. El área total del lote Zavala fue de 11.4 hectáreas de las cuales 10.8 hectáreas son efectivas, se midió con un GPS marca GARMIN modelo 76CS.

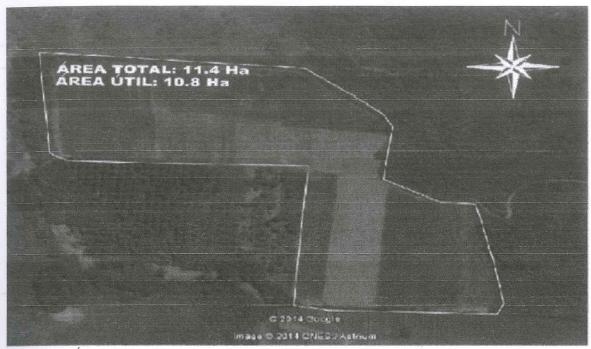


Figura 4. Área del lote Zavala.

Altimetría. Se realizó un mapa de curvas a nivel (Anexo 1) para determinar la diferencia de alturas en el lote, por cada metro de diferencia se gana o pierde 1.42 PSI. Se pueden observar los puntos críticos del lote en el cuadro 5.

Cuadro 5. Alturas críticas y distancia a la fuente del Lote.

Puntos	Altura (msnm)	Longitud a la fuente (m)	4	
Punto más alto	787	335		
Punto más bajo	771	240		
Trasvase (fuente)	779	0		

Suelo.

Textura. Las familias texturales resultado de los análisis (Anexo 4) son: texturas francas (franco limoso, franco arenosa y franco), texturas con arcilla liviana (franco arcillosa, franco arcillo limoso). En el Cuadro 6 se observa que las texturas que predominan en Santa Inés son las texturas franco arenosas y franco arcillosas.

Cuadro 6. Análisis de textura.

No. Muestra	Texturas	Arena %	Limo %	Arcilla %	Lote*
1	Franco Arenoso	64	18	18	lote uno
2	Franco	48	30	22	lote uno
3	Arena Franca	84	8	8	lote uno
4	Franco Arenoso	56	26	18	lote uno
5	Franco Arenoso	64	22	14	lote uno
6	Franco Arenoso	60	22	18	lote uno
7	Franco Arenoso	64	22	14	lote uno
8	Franco Arenoso	56	26	18	lote uno
9	Franco Arenoso	62	22	16	lote dos
10	Franco Arcilloso	54	26	20	lote dos
11	Franco Arcilloso	50	28	22	lote dos

^{*}El lote se dividió en dos lotes para facilitar el diseño (Anexo 2).

Estructura. Se realizaron cinco calicatas distribuidas según las familias texturales presentes en el lote y se determinó las características físicas y morfológicas para cada una (Anexo 6).

Infiltración básica del suelo. Se decidió tomar en cuenta dos infiltraciones básicas para el diseño del sistema de riego. Para el área donde predomina la textura franco arenosa se usó una infiltración básica de 25 mm/h y para el área donde predomina la textura franco arcilloso se usó una infiltración básica de 8.5 mm/h. En el Cuadro 7 se pueden observar las velocidades de infiltración básica de acuerdo a la textura.

Cuadro 7. Parámetros físicos promedio del suelo según su textura.

Textura del suelo	Velocidad de infiltración (mm/h)	Volumen poroso total (%)	Peso específico aparente (g/cm³)	Humedad a capacidad de campo* (%)	Punto de marchitez permanente* (%)
Arenoso	50.0	38.0	1.6	9.0	5.0
Franco Arenoso	25.0	43.0	1.5	14.0	6.0
Franco	14.0	46.0	1.4	22.0	10.0
Franco Arcilloso	8.5	49.0	1.3	27.0	13.0
Arcillo Arenoso	4.0	51.0	1.3	31.0	15.0
Arcilloso	0.5	53.0	1.2	35.0	17.0

*Basado en peso seco.

Fuente: (Avidan 1994).

Clima. En el Cuadro 8 se observan los promedios anuales de los factores climáticos que influyen en el cálculo de la ETo.

Cuadro 8. Promedio anual de los factores climáticos.

Año	Temperatura (°C)	Humedad Relativa (%)	Viento (m/s)	Precipitación (mm)
2009	22.7	68.9	1.7	784
2010	22.8	75.4	0.4	1547
2011	22.7	74.3	0.5	1178
2012	22.6	75.5	0.5	1178
2013	23.2	73.9	0.2	1086
Promedio	22.8	73.6	0.7	1154

Evapotranspiración de referencia (ETo). En el Cuadro 9 se muestran los datos históricos de ETo de los últimos nueve años (2005 – 2013), calculados por la estación climatológica de la unidad de Maquinaria y Riego. Estos datos se utilizaron para el cálculo de las necesidades hídricas del cultivo de piñón. En la Figura 5 se muestra el comportamiento del ETo promedio diario.

Cuadro 9. ETo (mm/día) de promedios diarios por períodos para Zamorano, Honduras (2005 – 2013).

Período	Fechas	ЕТо	Período	Fechas	ЕТо
1	1 al 7 enero	3.0	25	1 al 7 julio	3.5
2	8 al 15 enero	2.9	26	8 al 15 julio	2.9
3	16 al 23 enero	3.1	27	16 al 23 julio	3.4
4	24 al 31 enero	3.2	28	24 al 31 julio	3.6
5	1 al 7 febrero	3.2	29	1 al 7 agosto	3.7
6	8 al 14 febrero	3.7	30	8 al 15 agosto	3.5
7	15 al 21 febrero	3.4	31	16 al 23 agosto	3.6
8	22 al 29 febrero	3.8	32	24 al 31 agosto	4.1
9	1 al 7 marzo	3.9	33	1 al 7 septiembre	4.7
10	8 al 15 marzo	4.4	34	8 al 15 septiembre	3.7
11	16 al 23 marzo	4.2	35	16 al 22septiembre	3.6
12	24 al 31 marzo	4.3	36	23 al 30septiembre	3.2
13	1 al 7 abril	4.2	37	1 al 7 octubre	3.3
14	8 al 15 abril	4.5	38	8 al 15 octubre	3.2
15	16 al 22 abril	4.3	39	16 al 23 octubre	3.0
16	23 al 30 abril	4.2	40	24 al 31 octubre	3.2
17	1 al 7 mayo	4.0	41	1 al 7 noviembre	2.7
18	8 al 15 mayo	4.5	42	8 al 15 noviembre	3.1
19	16 al 23 mayo	3.9	43	16 al 22 noviembre	3.2
20	24 al 31 mayo	3.6	44	23 al 30 noviembre	3.0
21	1 al 7 junio	3.6	45	1 al 7 diciembre	3.1
22	8 al 15 junio	3.7	46	8 al 15 diciembre	3.0
23	16 al 22 junio	3.6	47	16 al 23 diciembre	2.9
24	23 al 30 junio	3.3	48	24 al 31 diciembre	2.8

Figura 5. ETo promedio diario semanal del 2005 - 2013.

Cultivo.

Evapotranspiración del cultivo (ETc). Se utilizaron los datos de ETo promedio diario semanal y los datos de Kc para determinar los requerimientos hídricos del cultivo. En los Cuadros 10 y 11 se observan los requerimientos hídricos semanales del cultivo de piñón para la primera, segunda y tercera etapa del cultivo. Siendo el requerimiento de la primera etapa el más alto.

Cuadro 10. Evapotranspiración del cultivo para la primera etapa.

Período Fechas		ETo	Kc	ETc	mm/período	m³/ha
1	1 al 7 enero	3.0~		3.0	20.8	208
2	8 al 15 enero	2.9	1.00	2.9	23.6	236
3	16 al 23 enero	3.1		3.1	25.0	250
4	24 al 31 enero	3.2		3.2	25.6	256
5	1 al 7 febrero	3.2	·	3.2	22.7	227
6	8 al 14 febrero	3.7	1.00	3.6	25.6	256
7	15 al 21 febrero	3.4	1.00	3.4	24.0	240
8	22 al 29 febrero	3.8		3.8	30.5	305
9	1 al 7 marzo	3.9		4.3	30.2	302
10	8 al 15 marzo	4.4	1.10	4.8	38.5	385
11	16 al 23 marzo	4.2	1.10	4.6	36.8	368
12	24 al 31 marzo	4.3		4.7	37.6	376

13	1 al 7 abril	4.2		4.2	29.2	292
14	8 al 15 abril	4.5	1.00	4.5	36.3	363
15	16 al 22 abril	4.3	1.00	4.3	29.8	298
16	23 al 30 abril	4.2		4.2	33.6	336
17	1 al 7 mayo	4.0		2.4	16.8	168
18	8 al 15 mayo	4.5	0.60	2.7	21.4	214
19	16 al 23 mayo	3.9	0.00	2.3	18.7	187
20	24 al 31 mayo	3.6		2.1	17.2	172
21	1 al 7 junio	3.6		2.1	15.0	150
22	8 al 15 junio	3.7	0.60	2.2	17.6	176
23	16 al 22 junio	3.6	0.00	2.2	15.2	152
24	23 al 30 junio	3.3		2.0	15.9	159
25	1 al 7 julio	3.5		1.8	12.3	123
26	8 al 15 julio	2.9	0.50	1.4	11.6	116
27	16 al 23 julio	3.4	0.30	1.7	13.6	136
28	24 al 31 julio	3.6		1.8	14.3	143
29	1 al 7 agosto	3.7		1.5	10.5	105
30	8 al 15 agosto	3.5	0.40	1.4	11.0	110
31	16 al 23 agosto	3.6	0.40	1.4	11.5	115
32	24 al 31 agosto	4.1	_	1.6	13.0	130
33	1 al 7 septiembre	4.7		2.3	16.3	163
34	8 al 15 septiembre	3.7	0.50	1.9	14.9	149
35	16 al 22septiembre	3.6	0.50	1.8	12.6	126
36	23 al 30septiembre	3.2		1.6	12.9	129
37	1 al 7 octubre	3.3		2.6	18.4	184
38	8 al 15 octubre	3.2	0.80	2.5	20.2	202
39	16 al 23 octubre	3.0	0.80	2.4	19.5	195
40	24 al 31 octubre	3.2		2.6	20.4	204
41	1 al 7 noviembre	2.7		2.2	15.1	151
42	8 al 15 noviembre	3.1	0.90	2.5	20.1	201
43	16 al 22 noviembre	3.2	0.80	2.5	17.7	177
44	23 al 30 noviembre	3.0		2.4	19.0	190
45	1 al 7 diciembre	3.1		2.7	19.2	192
46	8 al 15 diciembre	3.0	0.00	2.7	21.9	219
47	16 al 23 diciembre	2.9	0.90	2.6	21.1	211
48	24 al 31 diciembre	2.8		2.6	20.4	204

Cuadro 11. Evapotranspiración del cultivo para la segunda y tercera etapa.

Período	Fechas	ЕТо	Kc	ЕТс	mm/período	m³/ha
1	1 al 7 enero	3.0		1.8	12.6	126
2	8 al 15 enero	2.9	0.60	1.8	14.2	142
3	16 al 23 enero	3.1	0.60	1.9	15.0	150
4	24 al 31 enero	3.2		1.9	15.4	154
5	1 al 7 febrero	3.2		1.6	11.3	113
6	8 al 14 febrero	3.7	0.50	1.8	12.8	128
7	15 al 21 febrero	3.4	0.30	1.7	12.0	120
8	22 al 29 febrero	3.8		1.9	15.3	153
9	1 al 7 marzo	3.9		1.6	11.0	110
10	8 al 15 marzo	4.4	0.40	1.8	14.0	140
11	16 al 23 marzo	4.2	0.40	1.7	13.4	134
12	24 al 31 marzo	4.3		1.7	13.7	137
13	1 al 7 abril	4.2		2.5	17.5	175
14	8 al 15 abril	4.5	0.60	2.7	21.8	218
15	16 al 22 abril	4.3	0.00	2.6	17.9	179
16	23 al 30 abril	4.2		2.5	20.2	202
17	1 al 7 mayo	4.0		2.6	18.2	182
18	8 al 15 mayo	4.5	0.65	2.9	23.2	232
19	16 al 23 mayo	3.9	0.03	2.5	20.3	203
20	24 al 31 mayo	3.6		2.3	18.6	186
21	1 al 7 junio	3.6		2.5	17.5	175
22	8 al 15 junio	3.7	0.70	2.6	20.5	205
23	16 al 22 junio	3.6	0.70	2.5	17.7	177
24	23 al 30 junio	3.3		2.3	18.5	185
25	1 al 7 julio	3.5		2.6	18.5	185
26	8 al 15 julio	2.9	0.75	2.2	17.3	173
27	16 al 23 julio	3.4	0.73	2.6	20.4	204
28	24 jul al 31 julio	3.6		2.7	21.4	214
29	1 al 7 agosto	3.7		3.0	20.9	209
30	8 al 15 agosto	3.5	0.80	2.8	22.1	221
31	16 al 23 agosto	3.6	0.80	2.9	23.0	230
32	24 al 31 agosto	4.1		3.3	26.0	260
33	1 al 7 septiembre	4.7		4.2	29.4	294
34	8 al 15 septiembre	3.7	0.90	3.4	26.8	268
35	16 al 22septiembre	3.6	0.90	3.2	22.7	227
36	23 al 30septiembre	3.2		2.9	23.2	232
37	1 al 7 octubre	3.3		2.6	18.4	184
38	8 al 15 octubre	3.2	0.80	2.5	20.2	202
39	16 al 23 octubre	3.0		2.4	19.5	195

40	24 al 31 octubre	3.2		2.6	20.4	204
41	1 al 7 noviembre	2.7		2.2	15.1	151
42	8 al 15 noviembre	3.1	0.80	2.5	20.1	201
43	16 al 22 noviembre	3.2	0.80	2.5	17.7	177
44	23 al 30 noviembre	3.0		2.4	19.0	190
45	1 al 7 diciembre	3.1		2.1	15.0	150
46	8 al 15 diciembre	3.0	0.70	2.1	17.0	170
47	16 al 23 diciembre	2.9	0.70	2.1	16.4	165
48	24 al 31 diciembre	2.8		2.0	15.9	159

Calculo de parámetros de diseño. Como se mencionó anteriormente, el lote tiene diferentes familias texturales, por lo que se tomó la decisión de dividirlo en dos (Anexo 2). En el lote uno predomina la textura franco arenoso, por lo cual los cálculos se basaron en las características de esta textura, donde la infiltración básica es de 25 mm/h. En el lote dos predomina la textura franco arcilloso, por lo cual se usó una infiltración básica de 8.5 mm/h. Los cálculos se hicieron tomando en cuenta la evapotranspiración del cultivo (ETc) más alta para cada etapa y el caudal más bajo en la época seca, para asegurar que el sistema de riego pueda suplir el agua necesaria en cualquier época del año. En el Cuadro 12 y 13 se observan los parámetros de diseño.

Cuadro 12. Parámetros de diseño para la primera etapa del cultivo.

Parámetros de diseño	Franco Arenoso lote uno	Franco Arcilloso lote dos
Área (ha)	7.6	3.2
Caudal del emisor (L/h)	8.0	2.6
Distanciamiento entre emisor (m)	0.5	0.5
Distancia entre cinta (m)	3.0	3.0
Eficiencia del sistema de riego (%)	90.0	90.0
Porcentaje de agua aprovechable (%)	65.0	65.0
Evapotranspiración (mm/día)	4.8	4.8
Lámina de agua disponible a zr (mm/zr)	60.8	92.4
Lámina de agua aprovechable a zr (mm/zr)	39.5	60.0
Infiltración básica (mm/h)	25.0	8.5
Porcentaje del área bajo riego (%)	21.2	20.9
Precipitación horaria del sistema de riego (mm/h)	25.0	8.2
Intervalo de riego (días)	1.7	2.6
Días de paro	0.0	0.0
Intervalo de riego ajustado (días)	1.0	2.0
Ciclo de riego (días)	1.0	2.0
Lámina de riego ajustada (mm)	22.6	46.0
Lámina bruta (mm)	25.1	51.2
Dosis de riego bruta (m³/ha)	53.0	107.0
Horas de riego por turno	1.0	6.1
Máximo número de turnos de riego diarios	7.0	1.0
Horas de riego por día	7.0	6.1
Horas de riego por ciclo	7.0	12.3
Número de turnos por ciclo	7.0	2.0
Superficie bajo riego por turno (ha/turno)	1.0	1.6
Dosis de riego bruta por turno (m³/turno)	57.0	173.0
Caudal requerido (m³/h)	57.0	28.0

Cuadro 13. Parámetros de diseño para la segunda y tercera etapa del cultivo.

Parámetros de diseño	Franco Arenoso	
,	lote uno	lote dos
Área (ha)	7.6	3.2
Caudal del emisor (L/h)	8.0	2.6
Distanciamiento entre emisor (m)	0.5	0.5
Distancia entre cinta (m)	3.0	3.0
Eficiencia del sistema de riego (%)	90.0	90.0
Porcentaje de agua aprovechable (%)	65.0	65.0
Evapotranspiración (mm/día)	4.2	4.2
Lámina de agua disponible a zr (mm/zr)	60.0	94.5
Lámina de agua aprovechable a zr (mm/zr)	39.0	61.4
Infiltración básica (mm/h)	25.0	8.5
Porcentaje del área bajo riego (%)	21.2	25.8
Precipitación horaria del sistema de riego		
(mm/h)	25.0	6.8
Intervalo de riego (días)	1.9	3.7
Días de paro	0.0	0.0
Intervalo de riego ajustado (días)	1.0	3.0
Ciclo de riego (días)	1.0	3.0
Lámina de riego ajustada (mm)	19.7	48.8
Lámina bruta (mm)	21.9	54.2
Dosis de riego bruta (m³/ha)	46.0	140.0
Horas de riego por turno	0.8	7.8
Máximo número de turnos de riego diarios	9.0	10.0
Horas de riego por día	7.8	7.8
Horas de riego por ciclo	7.8	23.6
Número de turnos por ciclo	9.0	3.0
Superficie bajo riego por turno (ha/turno)	0.8	1.0
Dosis de riego bruta por turno (m³/turno)	39.0	151.0
Caudal requerido (m ³ /h)	44.0	19.0

Diseño.

Sistema de bombeo. Para este diseño, no fue necesaria la adquisición de una bomba, ya que la ganancia de presión de altura a la que se encuentra la fuente (850msnm) es suficiente para romper la CDT del sistema de riego.

Sistema de filtrado. El agua de la microcuenca de Santa Inés tiene concentraciones de sólidos suspendidos totales de 3.5 ppm en la fuente y 3.7 ppm en el trasvase. Estos valores

son mínimos, sin embargo, el fabricante de los goteros recomienda usar filtros de anillos de 130 micrones. Siguiendo la recomendación del fabricante, se seleccionó el filtro de marca AZUD modelo HELYX 4S con un caudal de filtrado de hasta 100 m³/h.

Tuberías y accesorios. Se seleccionó tubería de 6, 4, 3, 2 y 1.5" de PVC con un SDR de 32.5 para este diseño, además se usaron codos, válvulas, adaptadores hembra y macho, manómetros, tees, tapones, laterales de riego y goteros.

Emisores. Se seleccionó dos tipos de goteros insertados por la diferencia de textura para cada lote, para el lote uno donde predominan las texturas francos arenosos se usó el gotero AZUD ASR S-25 que tiene un caudal por emisor de 8 L/h. Para el lote dos donde predominan las texturas francos arcillosos se usó el gotero AZUD ASR S-50 que tiene un caudal por emisor de 2.6 L/h.

Carga Dinámica Total (CDT). Se calculó para cada tramo al punto más crítico del sistema (Figura 6). En el Cuadro 14 podemos ver todos los factores que influyen en la CDT y en el Cuadro 15 vemos la CDT total del sistema de riego diseñado.

Cuadro 14. Factores que influyen en el cálculo de la CDT.

Tramo	Cota Inicial (msnm)	ial Final	Diferencia de alturas		Diámetro	Longitud		Perdida por
			alturas (m)	PSI	onominal (")	(m)	H _f * (PSI)	fricción (PSI)
Fuente	779	780	1.0	1.4	6	1.8	0.2	1.6
Tramo 1	780	780	0.0	0.0	6	59.5	0.4	0.4
Tramo 2	780	779	-1.0	-1.4	6	65.1	0.4	-1.0
Tramo 3	779	783	4.0	5.7	3	87.4	3.1	8.8
Manifold	783	783	0.0	0.0	3	2.5	0.1	0.1
Lateral final	783	785	2.0	2.8	1.5	87.4	5.3	8.1
Accesori o	10 T	-	-	_	-	35.4	2.6	2.6

H_f* Perdida por fricción.

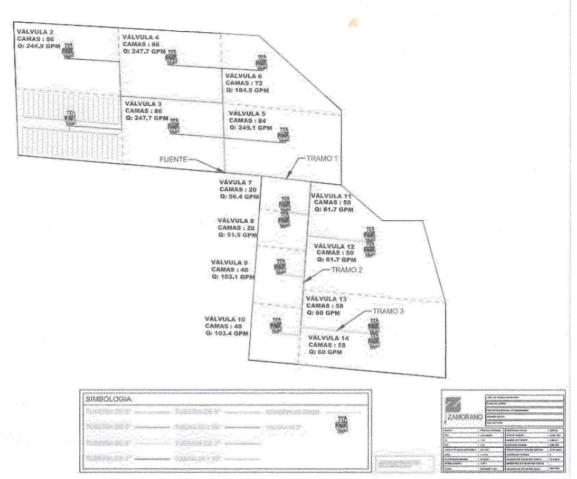


Figura 6. Diseño del sistema de riego.

Cuadro 15. Carga Dinámica Total (CDT).

Perdida de presión por componentes	Presión (PSI)		
Perdida de presión por fricción en tuberías, manifold,	20.6		
laterales y accesorios.	20.0		
Perdida de presión en el filtro	5.0		
Presión en lateral final	14.4		
CDT	25.6		

Programación de riego. El sistema de riego diseñado está adaptado para el cultivo de piñón, sembrado a 2 × 3 metros. El diseño tiene la capacidad de satisfacer la demanda hídrica del cultivo de piñón en la época más crítica con un intervalo de riego de un día para todo el lote. Los lotes uno y dos tienen un total de ocho turnos de aproximadamente una hora cada uno, En el Cuadro 16 podemos ver los caudales y las válvulas para cada una de las áreas. En el Cuadro 17 se puede ver la secuencia de apertura de las válvulas según los turnos de riego. El caudal de operación del sistema es de 72 m³/h.

Cuadro 16. Programación de riego.

(E) 235 (S)			Presión	
Lote	Válvula	Caudal (m ³ /h)	(PSI)	Área (ha)
Lote uno	1	55	31	1.2
	2	55	32	1.2
	3	55	30	1.2
	4	55	29	1.2
	5	56	24	1.2
	6	41	31	0.8
	7	12	28	0.2
	8	11	30	0.2
	9	23	33	0.3
	10	23	26	0.3
Lote dos	11	14	18	0.8
	12	14	14	0.8
	13	13	14	0.7
	14	13	14	0.7

Cuadro 17. Programación de riego por turno.

Turno	Válvula lote uno	Válvula lote dos	Caudal (m³/h)	Área (ha)	Horas de riego
1	1	11	69	2.0	1
2	2	12	69	2.0	1
3	3	13	68	1.9	1
4	4	14	68	1.9	1
5	5	11	70	2.0	1
6	6	12, 14	69	2.3	1
7	8, 9, 10	13	71	1.5	1
8	7	11,12,13,14	68	3.2	1

Presupuesto. El costo total de la implementación del sistema de riego es de \$34,469, incluye los costos por mano de obra. En el Cuadro 18 vemos el costo total de los accesorios del sistema de riego.

Cuadro 18. Presupuesto de la implementación del sistema de riego en las 10.8 ha.

Descripción	Lempiras (L.)	Dólares (\$)
Tubería y accesorios	410,888.2	19,436.5
Filtro	7,750.3	366.6
Manguera rígida de 16 mm	150,891.7	7,143.9
Goteros	86,094.2	4,072.5
Mano de obra	72,925.8	3,449.6
Total	634,705.5	34,469.3

Valor actual neto (VAN) y Tasa interna de retorno (TIR). El análisis financiero (Anexo 5) fue realizado para diez años con los ingresos y egresos por hectárea, para cada año se consideró que por hectárea se obtendrán dos cosechas de piñón. En el Cuadro 16 podemos ver la inversión en tuberías, accesorios, filtro, mangueras, goteros y mano de obra. El sistema de riego se deprecia linealmente a diez años con un valor de rescate de \$0. El valor actual neto (VAN) es de US \$96,385.7 con una tasa interna de retorno (TIR) de 22% calculados con un precio por kilogramo de semilla despulpada de US \$1.

4. CONCLUSIONES

- El sistema de riego por goteo, cubre a la totalidad las necesidades hídricas del cultivo.
- El costo del sistema de riego es de \$34,469.6.
- La implementación del sistema de riego es factible, ya que el proyecto presenta un VAN de US \$ 96,385.8 y una TIR de 22%.

5. RECOMENDACIONES

- Implementar el diseño e instalación de las 10.8 hectáreas ya que es factible económicamente.
- Trabajar con los turnos recomendados para evitar problemas con las presiones y caudales en las aplicaciones de riego.
- Enterrar la tubería principal a 0.50 metros para evitar daño mecánico, degradación por factores climáticos y reducir la pérdida de agua por evaporación.
- Realizar las pruebas de infiltración en campo, cuando las condiciones sean favorables.

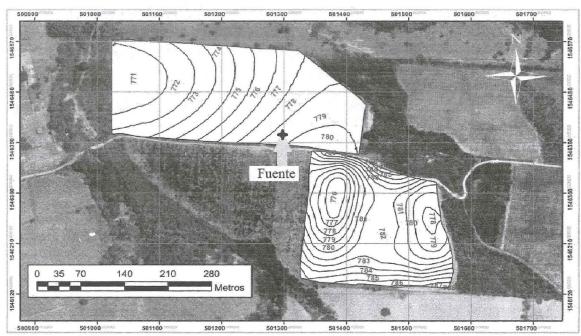
6. LITERATURA CITADA

Allen, R.G. 2006. Evapotranspiración del cultivo. Organización de las Naciones Unidas para la Agricultura y la Alimentación (FAO). Roma, Italia. 300 p.

Avidan, A. 1994. Determinación del régimen de riego de los cultivos. Factores que influyen sobre el régimen de riego. Dan Scheuer-Servicios Editoriales, Israel. 16 p.

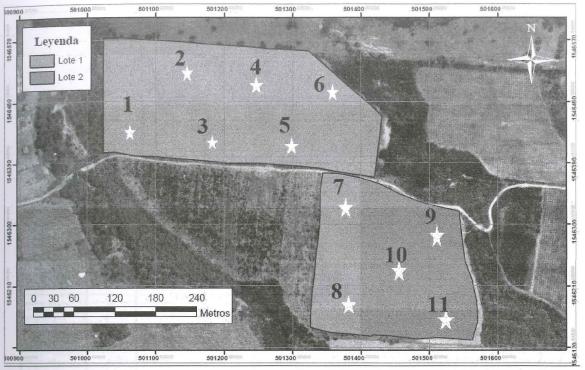
Iturrioz del Campo, J. (s.f.). Diccionario económico. Recuperado el 07 de 10 de 2014, de www.expansion.com.

Oyuela, D., Hernández, E., Samayoa, S., Bueso, C., & Ponce, O. (2012). Manual Cultivo de Jatropha Curcas. Tegucigalpa, Honduras. 56 p.


Shock, C., & Welch, T. (2013, marzo). Retrieved from ir.library.oregonstate.edu: http://ir.library.oregonstate.edu/xmlui/bitstream/handle/1957/37465/em8783.pdf

Toral, O., Iglesias, J., Montes de Oca, S., Sotolongo, J., García, S., & Torsti, M. (2008). Jatropha curcas L., una especie arbórea con potencial energético en Cuba. In Pastos y Forrajes.45 p.

Vinueza, Ricardo, 2009. Diseño de un plan de manejo de riego para los cultivos de cítricos en El Zamorano, Honduras. Proyecto especial del programa de Ingeniero Agrónomo, Honduras. 39 p.


7. ANEXOS

Mapa de curvas a nivel

Anexo 1. Mapa de curvas a nivel.

Mapa de distribución de lotes

Anexo 2. Mapa de distribución de lotes.

Anexo 3. Cotización de los materiales para el sistema de riego por goteo.

Del Campo

Cotización

100006984

Para

ANDRES GUEVARA

HONDURAS

Fecha

23/10/2014

Hora

11:12AM

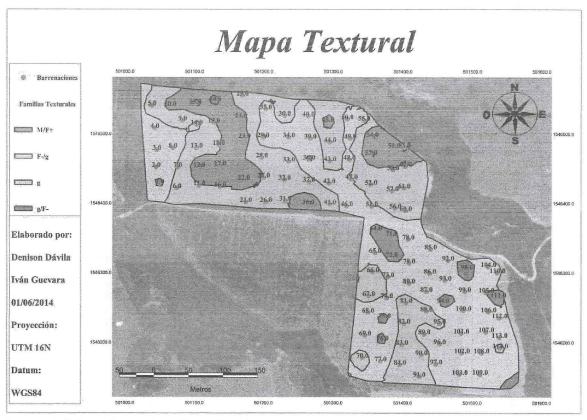
23/11/2014

样.	Articulo	Descripción	Cantidad	Precio	ISV	Total
t	RIE0467	TUBO & PVC SOR 41	106	LPS 902,609	14,351.482	LPS 95,576,554
2	RUEDO10	TUBO 4" FVC SDR 41"	62	LPS 417,987	3,887.279	LPS 25,915,194
3 .	RIE0305	TUBO 3" FVC SOR 41	39	LPS 252,174	1,475.218	LPS 9,834_786
4	RIE0306	TUBO 2PULG. PVC AP SOR 41	346	LPS 115.218	4,147.848	LPS 27,652,320
5	RIED298	TUBO 1 1/2" PVC SCR 41	50	LPS 75.217	564.128	LPS 3,750.850
8	RIEDE25	TUBO 1 1/4". PVC SOR 26	100	LPS 80.000	1,200.000	LPS 8,000.000
7	RIEDR26	TUBO 1°. PVC SDR 26	20	LPS 69.620	208.860	LPS 1,392.400
a	FIIE 0845	GRUZ LISA 6" PVC SCH 40	1	LPS 5,000.000	750.000	LPS 5,000.000
9	RIE0472	C000 LISO 6" X 50 PVC SCH 40	. 5	LPS 516.700	387.525	LPS 2,583.500
10	RIE0097	CODO LISO 4" X 90 PVC SCH 40"	18	LPS 151,305	408.524	LPS 2,723.490
11.	RUE0093	CODO LISO 3" X 90 FVG SCH 40" .	12	LPS 89.286	160.715	LPS 1,071,430
12	RED017	C000 LISO 2" X 90 PVC SCH 40		LPS 29,105	39.292	LPS 251.945
13	R0E0292	TEE LISA 5" PVC SCH 40	7	LPS 707.827	743.218	LPS 4,954.785
14	RIS0287	TEE LISA 4" PVC SCH 48	18	LPS 227,000	0.000	LP\$ 4,086.000
15	R/E0290	TEE LISA 3" PVC DWV	- 37 -	LPS 36,500	93.075	LPS 620,500
16	RIE0285.	TEE LISA 2' PVC SCH 40	10	LPS 28,700	43.050	LPS 287.000
17	F150834	TEE LISA 1 1/4PULG. FVC A/P	2	LPS 16:000	0.000	LPS 32.000
18	RIE0245	REDUCTOR USO BUSHINGS" - 4" PVC SCH 40	6	LPS 401.740	361,566	LPS 2,410,440
19	RIE0941	REDUCTOR USO BUSHING 6" - 3" FVC SCH 40	4	LPS 233.000	0.000	LPS 932.000
20	RIE0245	REDUCTOR USO BUSHING4" - 3" PVC SCH 40	5	LPS 76,250	57.188	LPS 381.250
21	RIE0247	REDUCTOR LISO BUSHING 4" - 2" FVC SCH 40	12	LPS 112.000	0.000	LPS 1,344,000
22	RIEDB21	REDUCTOR USO BUSHINGST, 27, PVC SCH 40	.14	LPS 49.566	104.089	LPS 693.924
23.	F0E0241	REDUCTOR LISO BUSHINGS*-1 1/2" PVC SCH 40"	2	LPS 25:000	0.000	LPS 50.000

Cotización 100006984

Para

ANDRES GUEVARA


HONDURAS

Fecha 23/10/2014

Hora 11:12AM

23/11/2014

部	Artículo	Descripción	Cantidad	Precio	ISV	Total
24	RIE0261	REDUCTOR LISO BUSHING2" - 1 114" PVC SCH 40	8.	LPS 26.700	32.040	LPS 213,600
25	R1E0242	REDUCTOR LISO BUSHING2" - 1" PVC SCH 46	4.	LPS 30,000	0.000	LPS 156,000
26	RIE0240	REDUCTOR USO BUSHING 1" 14 - 1" PVC SCH 46	4	LPS 15.990	9.594	LPS 63.960
207	RIE0274	TAPON ROSCA HEMBRA 29°ULG. SCH 40	24	LPS 38.200	130.320	LPS 868.800
28	RIE0865	TAPON ROSCA HEMBRA 1° PVC SCH 40	8	LPS 9.643	11.572	LPS 77.144
29	R1E0446	TAPON COPA LISO 1 1/4" PVC SCH 40	. 12	LPS 9.480	17.064	LPS 113,760
30	RIE0273	TAPON ROSCA HEMBRA 1/2PULG, DURMAN	4.	LPS 4,020	2.412	LPS 16,080
51	R150768	VALVULA SOLA PVC DE 4"	· · ·	LPS 1,153,470	1,038.131	LPS 6,500.874
32	RIE0343	VALVULA BOLA LIBA PVC 3 ⁵	2	LPS 189,000	56.700	LPS 378,000
33	RJE0350	VALVULA BOLA 3PULG. TECHOPLASTIC	4	LPS 1,370,000	822.000	LPS 5,480,000
34	RIE0294	TUBIN ROLLO 16 MW 400 MTS	58	LPS 1,600,000	21,119.999	LPS 140,800,000
35	R1E0838	FILTRO DE ANILLOS SPULO. 150 NESH 50 M38H AZUO	2	LPS 3,875,000	0.000	LPS 7,750.000
36	RIE0804	GOTERO COMPENSADOS BUMH AZUD GREENTEC	25,198	LPS 9.500	0.000	LPS 239,381,500

Anexo 4. Mapa de texturas Lote Zavala.

	0	1	2	3	4	5	6	7	8	9	10
Inversión	- \$34690	5									
Ingresos		\$1296	\$19440	\$51839	\$100765	\$129599	\$151199	\$151199	\$151199	\$151199	\$151199
Costos		\$58192	\$59100	\$62567	\$67803	\$70889	\$73201	\$73201	\$73201	\$73201	\$73201
Depreciación		\$3469	\$3469	\$3469	\$3469	\$3469	\$3469	\$3469	\$3469	\$3469	\$3469
Utilidad Bruta		\$52043	-\$46240	-\$17058	\$26900	\$52938	\$72540	\$72879	\$73245	\$73641	\$74068
Pago préstamo bancario		\$2883	\$3113	\$3362	\$3631	\$3922	\$4236	\$4575	\$4941	\$5336	\$5763
Utilidad Después de		ns	72.0004	77.4.400	****	0.4.400	0.01.050	0.1045	0.00.50	0.0504	0.00.55
impuestos		\$44237	-\$39304	-\$14499	\$22865	\$44997	\$61659	\$61947	\$62258	\$62594	\$62957
Flujo Neto Efectivo	- \$27844	- 1\$71495	- \$110444	- \$124837	- '\$102134	-\$24514	\$37145	\$99093	\$161352	, \$223947	\$286904

VAN = \$96385

TIR = 22%

Anexo 6. Resultado de las calicatas.

FORMATO DE DESCRIPCION DE PERFILES DE	SUELO
---------------------------------------	-------

				0.0.00	LIXI ILLO DI		ELU	
FECHA: UBICACIÓ	19/06/2014 Lote en	DESCRIBE Santa	Iván Andrés Guevara	1			No. DE CALICATA	2
N:	lnes: Za							
CLIMA: TR UNIDAD GEOMORF ELEVACIO	PP: 1200mm	to a second	Mayo - Agosto del rio	EV:	TEMPERA TURA:	24.7 °C		
750 msnm TOPOGR		PENDIENTE: 2	2%	DIRECCION:	este – oeste			
				MICROTOPOO INTERNO: Rev VEGETACION NATURAL: N/A	gular I	gular	NIVEL FR	EATICO: N/A
CULTIV	O: Jatropha	RENDIN		TIPO DE RIEG				

HORIZONTE	PROFUN	II	TEX						EL PE	RESIS	T								444	
	D	COLOR	T	ES	ESTRUCTURA		CC	NSISTI	ISISTENCIA T			POROS		RAICES		PIEDRA/ ROCA				
						C								IVAN	JLO	170	JCA	LI	MITE	
				TI		LA														
	cm			P 0	GRADO	SE	SE CO	HUM EDO	MOJ ADO	PENET RAC	TA M	F	CAN	TAM	CA	TA	CA	0	NIT	
Ąр	0-30	10yr 3/2	FA	ba	m				npg,		m,	<u> </u>	1	IAIVI	NT	M	NT	Р	DE	
na.		100	1 71	Da	111	m	S	Ť	np	3,43	f	t	m	m, f	f	N/A	N/A	р	а	
	30-60 60-90X	10yr 3/3 10yr 3/4	FA Ar	bsa g	d d	m	S S	mf s	mpg, p npg	>4.5 >4.5	f	V	f	N/A	N/A	N/A	N/A	р	g	