EFECTO DE LA SUPLEMENTACION CON CONCENTRADO A PARTIR DE TRES NIVELES DE PRODUCCION EN VACAS LECHERAS ALIMENTADA CON ENSILAJE DE MAIZ

POR

Gabriel Salceda Torre

TESIS

PRESENTADA A LA

ESCUELA AGRICOLA PANAMERICANA

COMO REQUISITO PREVIO A LA OBTENCION

DEL TITULO DE

INGENIERO AGRONOMO

MICROISIS: 4605

FECHA: 10/01/92

ENDARGADO: 3/10/ SPECIAL POPEROS SUBJECTIVA POPEROS SUBJECT SO SUBJECT SUBJECT SO SUBJECT SUBJECT SO SUBJECT SU

El Zamorano, Honduras Abril, 1992

EFECTO DE LA SUPLEMENTACION CON CONCENTRADO A PARTIR DE TRES NIVELES DE PRODUCCION EN VACAS LECHERAS ALIMENTADAS CON ENSILAJE DE MAIZ

POR

GABRIEL SALCEDA TORRE

El autor concede a la Escuela Agricola Panamericana permiso para reproducir y distribuir copias de este trabajo para los usos que considere necesarios. Para otras personas y otros fines, se reservan los derechos del autor.

GABRIEL SALCEDA TORRE

Abril, 1992

iii

DEDICATORIA

A Dios.

A mi familia.

A mi novia.

A Guatemala.

AGRADECIMIENTOS

A la Escuela Agricola Panamericana.

A mis padres y hermanos por su apoyo incondicional en todo momento.

A mi novia Anamaría.

A mi asesor principal, Miguel Vélez por su ayuda en la elaboración de este trabajo, por todas sus enseñanzas y su paciencia.

A mis asesores secundarios por su colaboración en la realización de este trabajo, por su apoyo y amistad.

A las familias: Disly, Rojas, Gallardo, Suarez y Benavides, por haber compartido su hogar conmigo haciendo mas grata mi estadia.

A mis colegas: Luis F. Restrepo, Cristián Coronas, Isaac Dehud, Amalia Gallardo, Ivett Avendaño, Lisette Wende, José Guevara, Manuel Dominguez, Roberto Bonifasi, Hector Suchini, Fidel Ponce, Martin Losen, Alfredo Ralda, Mario Carrera, Oscar Cordón y Roberto Campos por los buenos ratos que convivimos juntos.

INDICE GENERAL

PAG	SINA
1 INTRODUCCION	1
2 OBJETIVOS 3 REVISION DE LITERATURA 3.1 Factores que determinan la producción de leche 3.2 Ensilaje de maiz como fuente de forraje 3.3 Suplementación con concentrado 3.3.1 Concentrado y su efecto sobre el consumo de	2 3 4 7
ensilaje	8
consumo de alimentos	8
concentrado	9
4 MATERIALES Y METODOS 4.1 Localización y clima 4.2 Animales 4.3 Alimentación 4.3.1 Concentrado 4.3.2 Forraje 4.4 Tratamientos experimentales 4.5 Controles experimentales 4.5.1 Producción animal 4.5.2 Alimento consumido 4.5.3 Análisis de muestras 4.6 Diseño experimental	12 13 13 13 14 15 15 16 16
5 RESULTADOS Y DISCUSION 5.1 Consumo de ensilaje de maíz	18 18 19 22 22
6 CONCLUSIONES Y RECOMENDACIONES	24
7 RESUMEN	25
8 BIBLIOGRAFIA	26
9 ANEXOS	29

INDICE DE CUADROS

		PAG	LNA
Cuadro	1	Temperatura y precipitación durante el paríodo	
		experimental	12
Cuadro	2	Composición del concentrado	14
Cuadro	3	Composición del forraje	14
Cuadro	4	Asignación de tratamientos	17
Cuadro	5	Consumo diario de ensilaje de maiz por tratamiento.	18
Cuadro	6	Consumo de concentrado y producción promedio diaria	
		leche y grasa	19
Cuadro	7	Pesos promedio de las vacas al início y final de	
		cada período, durante el experimento	22
Cuadro	8. ~	Balanca nutricional por tratamientos	23

INDICE DE FIGURAS

]	PAGINA
FIGURA	1	Consumo pro	medio de	ens	silaje	de n	maiz por	per	ríodo	
		en materia	fresca							. 18
FIGURA	2	Producción	promedio	de	leche	por	período	en	1990	. 20
FIGURA	3	Producción	promedio	de	leche	por	período	en	1991	. 20
FIGURA	4	Producción	promedio	de	grasa	$_{\mathbf{por}}$	período	en	1990.	. 21
FIGURA	5	Producción	promedio	de	grasa	por	período	en	1991	. 21

INDICK DR ANKXOS

		PAGINA
ANEXO 1 Análisis de varianza, producción de leche	1990.	29
ANEXO 2.→ Análisis de varianza, producción de grasa	1990.	30
ANEXO 3.→ Análisis de varianza, producción de leche	1991.	31
ANEXO 4.→ Análisis de varianza, producción de grasa	1991.	32
ANEXO 5 Pesos de las vacas al início y final de c	ada	
período durante 1990.		33
ANEXO 6 Pesos de las vacas al início y final de c	ada	
período durante 1991.		34

1 - INTRODUCCION

En cualquier explotación pecuaria la alimentación constituye el mayor rubro de los costos de producción. En el caso de la ganadería de leche la utilización de concentrados para suplementar el forraje es una práctica muy antigua y necesaria si el potencial genético de los animales es alto. Cuando es empleada en forma indiscriminada, eleva los costos de producción. Además una proporción de sus componentes puede ser usada directamente en la alimentación humana.

En la época seca la situación se complica más aún, puesto que la productividad de las praderas es muy baja o nula, lo que obliga a los productores a la utilización de otros recursos, como los forrajes conservados en forma de ensilaje o heno, o los rastrojos.

El hato de la Escuela Agricola Panamericana permanece estabulado durante el verano y su alimentación consiste en ensilaje de maíz, heno de pasto transvala, semilla de algodón, melaza y concentrado. Este último se ofrece a las vacas en producción a razón de 1 kg por cada 2 kg de leche producida a partir de una producción de 4.5 kg de leche, los cuales se asume provienen el forraje.

2.- OBJETIVOS

Tomando en cuenta lo anterior se realizó el presente trabajo que tuvo como objetivo:

Evaluar el efecto de la suplementación con diferentes niveles de concentrado en la producción de vacas lecheras del hato de la Escuela Agricola Panamericana, estabuladas y alimentadas con ensilaje de maiz bajo las condiciones de manejo prevalecientes en la época seca.

DESCRIPTION TO SOME POTENCE ESCUELA ACTUALA ACTUALA ACTUALA ACTUALA ACTUALA ACTUALA TECHNOLOGIA A ACTUALA ACTUALA

3. REVISION DE LITERATURA

3.1.- Factores que determinan la producción de leche.

La cantidad de leche que produce una vaca es el resultado de una combinación de factores que influyen sobre su capacidad fisiológica de producción y sobre la cantidad de nutrientes que consume. Los factores más importantes son: la capacidad genética, el estado de lactancia, la historia nutricional, el plano nutricional y el tipo de alimentación. De los anteriores, los tres primeros influyen sobre la condición fisiológica del animal y su habilidad para producir leche. Los dos restantes determinan la cantidad y calidad de los mutrientes disponibles para la síntesis láctea y son los manipulados para aumentar la producción.

Las necesidades energéticas y protéicas de la vaca lechera son aspectos en permanente estudio, ya que son muchos los factores que intervienen en la respuesta animal a ambos elementos. García-López y col. (1988), citan entre otros: la relación proteína-energía, y el contenido de proteína en la dieta, así como au calidad y degradabilidad, la proteína almacenada en el cuerpo, el estado de lactación, el nivel de producción y la condición corporal.

Cuando la producción de leche se basa en el consumo de pastos, ésta se limita en la época de lluvias a 8 - 9 litros en razas pequeñas y 10 - 12 litros en razas grandes, (Hillman, 1969). En verano la producción de leche dependerá de la calidad del forraje preservado.

3.2. Ensilaje de maiz como fuente de forraje.

Los forrajes constituyen una parte importante de las raciones del ganado lechero por razones fisiológicas y económicas. Stobbs (1976), encontró que con pastos tropicales es necesario ofrecer al menos 35 kg de M.S como punto óptimo para aprovechar mas del 90% de el potencial de producción del animal. La vaca debe consumir cantidades adecuadas de fibra (un mínimo de 15% de la MS) para regular el consumo y para suplir la fibra necesaria para mantener una buena salivación y rumia, y así mantener un nivel adecuado de grasa en la leche (Olson 1965; citado por Larkin, 1970).

Los forrajes son relativamente inútiles para la alimentación humana y el costo por unidad de nutriente en ellos es muy inferior al de los alimentos concentrados (Etgen y Reaves, 1985).

La planta de maíz es similar a los demás forrajes y sus componentes son básicamente los mismos aunque existen algunas diferencias. La alta digestibilidad de la fibra cruda y su alta concentración de almidón y otros carbohidratos solubles hacen que su valor energético sea alto en comparación con la mayoría de los forrajes.

El ensilaje es el producto de la fermentación del forraje fresco bajo condiciones anaeróbicas. Las bacterias presentes en el forraje fermentan los carbohidratos disponibles y producen ácidos orgánicos que evitan el crecimiento de bacterias, conservando así el forraje sin variar casi su

calidad (Bath y col., 1978).

El maíz, por su alto rendimiento de forraje, es una planta usada para la elaboración de ensilajes en muchas regiones lecheras. Además, si se cosecha cuando el grano está en estado lechoso, es rica en azúcares lo cual hace relativamente sencilla la elaboración del ensilaje (Etgen y Reaves, 1985 y; Tirrel y Moe, 1972). Un problema es que el contenido de proteína cruda, es bajo en comparación a la contenida por la mayoría de las leguminosas, pero similar a la de otras gramíneas.

Según Thomas (1970), el uso de ensilaje de maíz como única fuente de forraje permite producciones iguales o mayores a las obtenidas con heno de alfalfa.

Existen tres factores importantes en la composición de la planta de maíz al momento de ensilarla: (1) La lignificación de la pared celular aumenta con la edad y reduce la digestibilidad de la planta y consecuentemente su contenido de energía metabolizable, (2) Su contenido de proteína cruda (N * 6.25) disminuye a medida que la planta madura y (3) La facilidad con que se puede ensilar la planta de maíz depende en parte de su contenido de carbohidratos solubles en agua, básicamente fructosa, glucosa y sucrosa y que disminuyen igualmente con la edad (Thomas, 1980).

En climas templados, de acuerdo a su contenido de proteína el ensilaje de meíz con mazorca puede sostener una producción de 15-16 kg de leche/vaca/día y por su contenido de

energía hasta 23 kg de leche/vaca/día (Luengas y Pulido, 1990).

Debido a que el maíz constituye el alimento humano básico de la población de muchos países del mundo, su empleo para la alimentación del ganado ha sido cuestionado, ya que en el proceso de ensilaje se incluye el grano; el cual, con su aporte de almidón es importante para asegurar una buena fermentación láctica del material (Bines, 1984).

El consumo de dietas que contienen gran parte de forraje se vé limitado por la naturaleza del mismo. La vaca lechera tiene una capacidad ruminal limitada y consume forraje para mantener constante ese nivel. La digestibilidad de una ración esta determinada por el nivel de consumo, la relación forraje:concentrado y la madurez del forraje. (Llamas-Lamas, 1991).

Dentro de ciertos límites, el consumo voluntario de la materia seca del ensilaje aumenta a medida que el contenido de materia seca es mayor. Hillman (1969) al comparar datos de consumo de ensilaje con diferentes contenidos de materia seca, concluye que las diferencias obtenidas no dependen de el contenido de materia seca, si no de muchos factores que afectan el consumo de la misma. En términos generales el consumo de MS que se puede esperar de un ensilaje de maiz es equivalente a 2 a 2.2 % del PV (McCullough y col., 1964).

3.3.- Suplementación con concentrado.

El ensilaje rara vez es ofrecido como única fuente de nutrientes en vaca lecheras, casi siempre se acompaña de concentrado. El concentrado es más eficiente como suplemento debido a la mejor utilización de su proteína, yá que el contenido de materia seca, proteína cruda y la digestibilidad de los pastos, son limitantes para la producción de leche (Suchini y col., 1986).

La suplementación debe decidirse en base a la disponibilidad, al costo de los alimentos y al mérito lechero de las vacas (Velásquez, 1977; Huffman, 1964; citado por Kesler y Spahr, 1964). Si bien es una práctica muy antigua, en ocasiones es empleada en forma indiscriminada y eleva los costos de producción (Calzadilla y col., 1986).

Un problema que se presenta con frecuencia cuando se usan niveles altos de concentrado es la disminución en el contenido de grasa de la leche, a consecuencia de la reducción de ácido acético en el rumen, y la menor digestibilidad de la fibra (Balch y col., 1955, citados por Velásquez, 1977; Kesler y Spahr, 1964).

Haresing (1988), observó que cuando el ensilaje es ofrecido ad libitum y se suplementa con concentrado, el consumo de forraje disminuye. Bajo condiciones tropicales debido al bajo valor de los pastos se hace imprescindible suplementar a la vaca lechera, cuando su potencial sobrepasa los 2000 kg de leche por lactancia (Jerez y col, 1988).

3.3.1.- Concentrado y su efecto sobre el consumo de ensilaje.

La calidad y frecuencia con que el concentrado es suplementado influyen en el consumo de ensilaje (Leaver, 1973 y Ostergaard, 1979; citados por Hillman, 1969).

Tanto las características del concentrado como las del ensilaje influyen el rango de sustitución, además el peso vivo, la condición después del parto, el rendimiento de leche y la etapa de lactación influyen en el consumo voluntario de ambas fuentes de nutrientes. La relación forraje:concentrado, afecta el consumo de alimento, la producción microbiana, la función del retículo-rumen, el lugar y la magnitud de la digestión, la eficiencia de la utilización de la energía para la producción de leche, la movilización de la grasa corporal y la composición de la leche (Reeve y col., 1986).

3.3.2.- Influencia del potencial genético en el consumo de alimentos.

El factor más determinante en la respuesta a la suplementación es el diferencial de potencial para producir leche, entre el alimento base y el animal (García, 1987: Strickland y Lessells, 1971).

El aumento del potencial lechero de las vacas mejora la respuesta al concentrado debido a que aumenta el diferencial entre los requerimientos y las posibilidades de consumo de energía a partir del forraje. Strickland y Lessella (1971), con vacas de diferente potencial encontraron que mientras la respuesta a la suplementación fue de 0.5 kg de leche/kg de

concentrado en vacas de bajo potencial (14 kg/vaca /día entre la 5a. y 14a. semana de lactación), ésta aumentó a 0.86 y 1.66 kg de leche/kg de concentrado, en vacas de mediano y alto potencial, respectivamente (17 y 21 kg de leche/vaca/día de la 5a. a la 14a. semana de lactación, respectivamente).

3.3.3.- Calidad del forraje y consumo de concentrado.

Kristensen (1983), basándose en los resultados de nueve experimentos con ensilaje de maíz, con una digestibilidad de la materia orgánica entre 0.85 y 0.85, concluye que el nivel de sustitución no depende de la digestibilidad del ensilaje. Mientras que Moisey y Leaver (1984) y Phipps y col. (1987; citados por Thomas 1980), sostienen que a menor digestibilidad de el ensilaje hay un mayor consumo de concentrado. (1985; citado por Thomas, 1980), obtuvo rangos de sustitución entre 0.17 y 1.00 kg de concentrado por kg de ensilaje de maíz, dependiendo de la calidad del mismo. Reeve y col. (1986), observaron que el rango de sustitución aumenta cuando el porcentaje de proteína cruda en el concentrado aumenta. Thomas (1980), concluye que la sustitución de un alimento por otro está influenciada por las características del forraje, en cuanto afecta su consumo voluntario, palatabilidad y el llenado del tracto digestivo.

Blaxter (1980) y Osbourn (1980; citados por Haresingn, 1988) sugieren que un alimento sustituye a otro en proporción a su consumo voluntario cuando es ofrecido como único

alimento.

Meijs y Hoskstra (1984) señalan que los factores que influyen en la sustitución del forraje por concentrado están relacionados con la diferencia entre el consumo de nutrientes del pasto y los requerimientos del animal. diferencia es negativa (los requerimientos son mayores), los efectos sustitutivos son bajos, mientras que cuando positiva los efectos sustitutivos son altos. Por ello, la respuesta a la suplementación estará relacionada con los efectos depresivos o estimulantes que producen los concentrados en el consumo de los forrajes; cuando éstos son · de buena calidad, el suministro de concentrado disminuye drásticamente su consumo. Esta disminución puede variar entre 0.6 y 1.0 kg de forraje/kg de concentrado (Leaver y col., 1968; Tarapia y Davery, 1970).

Leaver y col. (1968), establecieron que cuando se dan alimentos bases de buena calidad la respuesta a la suplementación en términos de producción de leche es baja (0.33 - 0.40 kg de leche/kg de concentrado). Cuando la calidad del forraje es baja, los efectos sustitutivos decrecen e inclusive en alimentos de muy baja calidad, sobre todo cuando tienen bajo nivel de proteínas, la suplementación moderada con concentrados o proteínas incrementa su consumo (Journet y Demarquilly, 1979), así como su digestibilidad (García y Trujillo, 1983).

En Cuba, en animales suplementados a partir de los 5 kg

de leche producida, Calzadilla y col. (1986) no encontraron diferencias significativas en la producción de leche, pero si en las ganancias de peso, logrando mejores condiciones para la siguiente lactancia.

El consumo de altas cantidades de carbohidratos de fácil fermetación afecta el equilibrio en el rumen (Kesler y Spahr, 1964). Hay un aumento en la concentración de ácido láctico y un pH menor, cuando el consumo es superior a 4 kg de concentrado/día, lo que va en detrimento de la eficiencia en la utilización del alimento. Una solución a este problema, es la distribución del concentrado en tres dosis al día (García y col., 1986).

4.- MATERIALES Y METODOS

4.1.- Localización y clima

El presente trabajo se llevó a cabo en las instalaciones de la sección de ganado lechero de la Escuela Agrícola Panamericana (E.A.P.), situada en el valle del Zamorano, departamento de Francisco Morazán, a 35 km al este de Tegucigalpa. El experimento se realizó en dos fases: la primera durante los meses de enero a abril de 1990 y la segunda durante el mismo período en 1991.

El valle del Zamorano esta situado a 14º latitud norte y 87º longitud ceste, y a 800 m.s.n.m. Se presentan dos estaciones bien marcadas, una lluviosa de junio a noviembre y otra seca de diciembre a mayo. La temperatura promedio anual es de 22 °C. y la precipitación de 1100 mm. El cuadro 1 muestra la precipitación y las temperaturas máximas y mínimas alcanzadas durante el período experimental. (enero-abril de 1990 y 1991).

Cuadro 1.- Temperatura y precipitación durante al período experimental.

		Temperatu	ara oC	Precipitación
Año	Mes	Minima	Máxima	total mm.
1990	Enero	16.9	27.1	24.3
	Febrero	16.2	28.7	7.7
	Marzo	18.2	30.0	4.3
	Abril	19.9	29.9	3.8
1991	Enero	10.8	29.2	11.3
	Febrero	8.5	31.2	8.5
	Marzo	9.7	34.9	0.04
	Abril	13.5	35.9	1.80

4.2.- Animales

Se utilizaron 18 vacas de las razas Holstein y Pardo Suizo, con dos a cuatro meses de lactancia. Para la asignación de los tratamientos se repartieron las 18 vacas en tres bloques, de dos grupos de tres vacas cada uno, según su nivel de producción. Las vacas permanecieron estabuladas junto con el resto del hato durante la primera fase y en grupos de tres animales por corral recibiendo el mismo tratamiento durante la segunda fase.

4.3.- Alimentación

El patrón de alimentación fue el mismo que se utiliza para alimentar el hato de la E.A.P y consistió en ambas fases de: ensilaje de maíz ad libitum, 1.8 kg heno de pasto transvala (Digitaria decumbens), 0.9 kg de harina de semilla de algodón, 0.9 kg melaza, y concentrado según el tratamiento. Todo el alimento se dio en dos fracciones, una en la mañana y otra en la tarde.

4.3.1.- Concentrado

Se usó la mezcla de concentrado asignada para el hato lechero (Cuadro 2). El concentrado se suministró según el tratamiento dos veces al día durante los ordeños de la mañana y el de la tarde.

El concentrado se suministró a razón de 1 kg por cada 2 kg de leche producida sobre el valor minimo fijado y la

producción de cada vaca ajustada al 4 % de grasa. Para el ajuste se uso la siguiente ecuación:

Leche corregida al 4 % de M.G. =

0.4 * kg de leche + 15 * kg de grasa.

Cuadro 2.- Composición del concentrado.

Ingredientes	%	
Maiz	28,21	
Harina de algodón	21.85	
Harina de coguito	15.00	
Salvado	25.00	
Melaza	10.00	
CaCOs	1.92	
Sal	0.50	
Vitamelk	0.25	
Proteina Cruda (%)	18.76	
Energia Digerible (Mcal/kg)	2.96	

4.3.2. Forraje

El alimento base fue ensilaje de maíz, cosechado en estado lechoso, ofrecido ad libitum en la mañana y en la tarde. La composición de los componentes de la dieta se indica en el Cuadro 3. El consumo de ensilaje se determinó por diferencia entre lo ofrecido y lo rechazado cada dos dias, durante la segunda fase unicamente.

Cuadro 3.- Composición del forraje.

D mcal/kg	ED meal	PC, %	MS, %	Ingredientes
2.46	2.48	8.7	29.1	Ensilaje de maiz
2.62	2.62	11.3	85.3	Heno de transvala
2.84	2.84	32.3	92.4	Harina de algodón
2.45	2.45	4.4	73.2	Melaza
2.4	2.4	4.4	73.2	melaza

4.4. - Tratamientos experimentales

Se evaluaron tres niveles de suplementación:

- Tratamiento # 1: Suplementación con concentrado a partir de
 4.0 kg de leche por día ajustada al 4 % de
 grasa.
- Tratamiento # 2: Suplementación con concentrado a partir de 5.5 kg de leche por día ajustada al 4 % de grasa.
- Tratamiento # 3: Suplementación con concentrado a partir de 7.0 kg de leche por día ajustada al 4 % de grasa.

Cada período tuvo una duración de 21 días, para un total de 84 días, mas siete días previos en que los animales recibieron el nivel más alto de suplementación (1.0 kg de concentrado por cada 2.0 kg de leche producida a partir de los 4.0 kg), para igualar las condiciones y evitar que la producción se viera afectada por un nivel más bajo del período anterior al momento de iniciar el experimento.

4.5.— Controles experimentales

Se tomaron datos tanto de la producción enimal como de la calidad y cantidad del alimento consumido.

4.5.1.- Producción animal.

Se tomó el peso de cada vaca al inicio del ensayo y luego al final de cada período experimental.

Semanalmente se midió la producción de leche y se obtuvieron muestras de leche para analizar el contenido de grasa.

4.5.2.- Alimento consumido.

El forraje ofrecido y rechazado se pesó cada dos días, tambien se tomaron tres muestras por período de cada alimento suministrado para su análisis respectivo.

4.5.3. - Análisis de muestras.

Los alimentos se analizaron en el laboratorio de Nutrición Animal de la E.A.P. Se determinaron el contenido de materia asca (MS), proteína cruda (PC) por los métodos de A.O.A.C. (1980), y energía digerible por el método de Menke y col. (1979).

Los análisis de leche se llevaron a cabo en el laboratorio de la Planta de Lácteos de la E.A.P., utilizando el método de Babcock descrito por Revilla (1989).

4.6. - Diseño experimental.

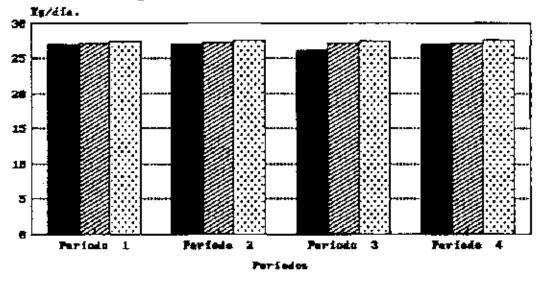
Se utilizó un diseño de sobre cambio con período extra, dispuesto en cuadrado latino (Cuadro 4). De tal forma que cada tratamiento estuvo precedido y seguido por cada uno de los demás tratamientos. El diseño compensa las diferencias que se podrían presentar a medida que avanza la lactancia. Además se pueden determinar posibles efectos residuales entre períodos,

y en caso de no existir estos, el diseño permite su eliminación para analizar solo los efectos directos (Lucas, 1957).

Cuadro 4.- Asignación de tratamientos.

Período de comparación.	Trátamientos por cuadrado y bloque.					
	1	2	3	1	2	3
1 2		B	-		_	C B
3 4	_	-				Ā A

5.- RESULTADOS Y DISCUSION


5.1 Consumo de ensilaje de maiz.

El Cuadro 5, y la Figura 1 muestran los promedios de consumo obtenidos durante el experimento. No se observaron diferencias en el consumo entre tratamientos.

Cuadro 5. - Consumo diario de ensilaje de maiz por tratamiento.

Tratamiento	Ensilaje kg MS/día.
1	7.72
Ž	7.84
3	7.95

Figura 1.- Consumo promedio de ensilaje de maíz por período en materia fresca.

ZZ Iralamiente 2

Tratamiania 3

5.2.- Producción de Leche y grasa.

La producción promedio de leche ajustada al 4% de grasa y el contenido de grasa promedio en 1990 y en 1991, se muestra en el Cuadro 6. No hubieron diferencias significativas tanto en la producción de leche como en la de grasa. Los porcentajes de grasa fueron 3.28, 3.45 y 3.59 en 1990; y 3.11, 3.27 y 3.58 en 1991 para los tres tratamientos, respectivamente.

Los resultados encontrados concuerdan con los obtenidos por Leaver y col. (1984), quienes indican que no hay una respuesta en cuanto a producción de leche o grasa usando niveles medios de suplementación; pero discrepan con los de García y Pérez (1975) quienes sugieren suplementar después de 4 kilogramos de leche producida, que ellos consideran es la capacidad de producción del forraje en el trópico.

Cuadro 6.- Consumo de concentrado y producción promedio diaria de leche y grasa.

Año	Tratamiento	Concentrado kg/vaca/día	Leche al 4 %, kg	Grasa kg
1990	1	4.78	17.2	0.62
	2	4.23	17.0	0.62
	3	3.37	16.3	0.62
1991	1	4.85	17.5	0.61
	2	4.25	16.9	0.82
	3	3.58	16.6	0.63

Figura 2.- Producción promedio de leche por período en 1990.

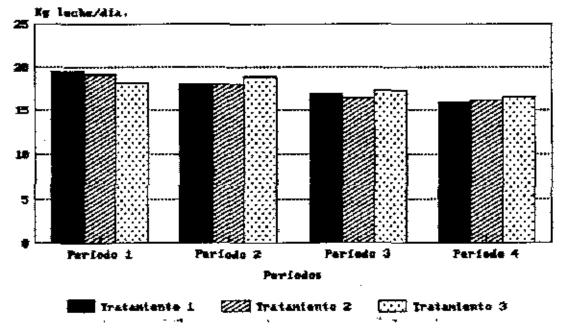


Figura 3.- Producción promedio de leche por período en 1991.

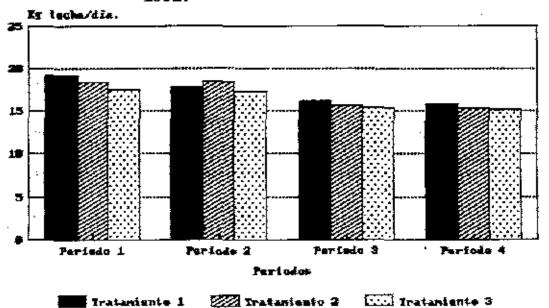


Figura 4.- Producción promedio de grasa por período en 1990.

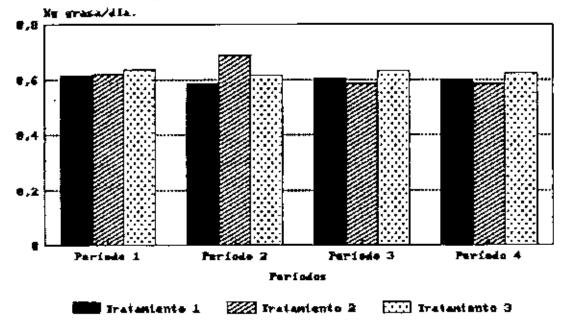
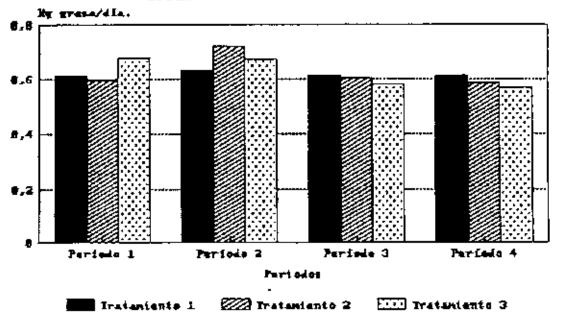



Figura 5.- Producción promedio de grasa por período en 1991.

5.3 Condición de los animales.

No se observaron cambios en el peso de los animales entre tratamientos en ambas fases del experimento. (Cuadro 7).

Cuadro 7.- Pesos promedio de las vacas al inicio y final de cada período, durante el experimento.

Año	Peso inicial	Peso final
1990 1991	. 452 . 445	452 445

5.4.- Balance nutricional.

Con los datos de la segunda etapa, se realizó un balance nutricional (Cuadro 8) tomando como base los requerimientos fijados por el N.R.C. (1988) y la cantidad y composición promedice de los alimentos consumidos en cada tratamiento.

Como se aprecia en el balance realizado, tanto la PC como la ED aportadas por el ensilaje son suficientes para cubrir los requerimientos de mantenimiento. Tanto la ED como la PC permiten una producción de por lo menos 3 kg de leche.

El ensilaje de maíz junto con los otros alimentos en los tres tratamientos provee de suficientes nutrientes para producir por lo menos 7 kg de leche.

Las diferencias obtenidas en el balance nutricional se le atribuyen a un posible error en la medición del consumo de el ensilaje de maíz.

BEDDITTERA WILCON POPUNOS

EDOUTLA ACCTORNA PARAMERICANA

Cuadro 8 .- Balance nutricional por tratamientos.

		<u>-</u>	
	MS	PC	ED
TRATAMIENTO 1	Кg	Kg	Meal
REQUERIMIENTOS			———— —— ——
Mantenimiento		0.37	14.66
Producción		1.58	24.63
Total		1.95	39,49
+			
CONSUMO			
Concentrado	4.35	0.79	13.01
H. algodón	0.86	0.28	2,45
Melaza	0.67	0.03	1.84
Heno	1.60	0.18	4.20
Ensilaje	7.72	0.67	19.14
TOTAL	15.20	1.95	40.44
TRATAMIENTO 2		·	
TRATAMIENTO Z			
REQUERIMIENTOS			
Mantenimiento		0.37	14.86
Producción		1.50	24.43
Total		1.87	39.29
CONSUMO			
Concentrado	3.86	0.70	11.61
H. algodón	0.86	0.28	2.45
Melaza	0.67	0.03	1.64
Heno	1.6	0.18	4.20
Ensilaje TOTAL	7.84 14.83	0.67 1.90	19.44 39.34
	14.03 ========		
TRATAMIENTO 3			
REQUERIMIENTOS			
Mantenimiento		0.37	14.86
Producción		1.41	23.45
Total		1.78	38.31
CONSUMO			
Concentrado	3.16	0.59	9.51
H. algodón	0.86	0.28	2.45
Melaza	0.68	0.03	1.64
Heno Frailais	1.6 7.95	0.18 0.68	4.20 19.71
Ensilaje TOTAL	14.95	1.76	37.51

6.- CONCLUSIONES Y RECOMENDACIONES

No se encontraron diferencias en la producción de leche o de grasa entre tratamientos, por lo que se recomienda suplementar a partir de los 7.0 kg de leche/vaca/día ajustada al 4% de grasa.

No se encontraron diferencias en el consumo de forraje, por lo que se concluye que no existío una sustitución en su consumo por los niveles de suplementación utilizados.

Se recomienda realizar más estudios utilizando otros niveles de suplementación más bajos.

7 - RESUMEN

Con objeto de evaluar el efecto de la suplementación con concentrado, sobre una dista en base a ensilaje de maiz se realizó el presente estudio en la Escuela Agricola Panamericana, a 800 m.s.n.m., entre enero y abril de 1990 e igual para 1991. Durante el período experimental temperatura promedio fue de 23.2 y 21.7 °C y la precipitación de 10.0 y 5.4 mm durante los años de 1990 y 1991, respectivamente. Se usaron 18 vacas de las razas Holstein y Pardo Suizo, con dos a cuatro meses de lactancia, y provenientes de la 3a y 5a lactancia. Se mantuvieron estabuladas en grupos de tres animales/corral que recibieron el mismo tratamiento. Las vacas fueron alimentadas con ensilaje de maíz ad libitum, 0.9 kg de harina de semilla de algodón, 0.9 kg de melaza, 4.54 kg de heno de pasto transvala (Digitaria decumbens) y concentrado. Para el análisis de los datos se utilizó un diseño de sobre cambio con período, extra dispuesto en cuadrado latino. Se usaron tres niveles de suplementación, los mismos que partieron de una producción de 4.0, 5.5 y 7.0 kg de leche/vaca/día ajustada al 4 % de grasa, a razón de 1.0 kg de concentrado por cada 2.0 kg de leche. La producción promedio en 1990 fue de 17.2, 17.0 y 16.3 kg/vaca/día, y en 1991 de 17.5, 16.9 y 16.6 kg/vaca/día para los tres niveles de suplementación, respectivamente. No se encontraron diferencias significativas en la producción de leche, ni en la de grasa, por lo que se recomienda la suplementación a partir de 7.0 kg de leche/vaca/día.

8. BIBLIOGRAFIA

- A.O.A.C. 1965. Official methos of analysis of the Association of Official Chemist. 10th ed. Washington D.C.
- BATH, P.; DICKINSON, F.; TUCKER, H.; APPLEMAN, R. 1978.
 Dairy cattle: Principles, Practices, Problems and
 Profits. Lea & Febiger, Philadelphia, U.S.A. p. 189-215.
- BINES, J.A., 1984. Silage limitants. In Feeding strategy for the high yielding dairy cow. W.H Broster y H. Swan. (Eds) St Albans Granada Publising. Inglaterra p. 245-258.
- CALZADILLA, P.; VARGAS, A.; MENCHACA, M.; GOMEZ, R. 1986. Efecto del nivel de suplementación con concentrado en la producción de leche de vacas en pastoreo paridas en el período de lluvia. Rev. Cubana Cienc. Agric. 20: 15-20.
- ETGEN, W.; REAVES, P. 1985. Ganado lechero, alimentación y administración. Editorial Limusa. México D.F. p. 109-153.
- GARCIA, T.R. 1988. Estudio de la respuesta al suministro de alimentos concentrados en vacas lecheras. Rev. Cubana Cienc. Agric. 22: 39-43.
- GARCIA, F.; PEREZ, F. 1975. Efecto del nivel de suplementación a vacas en pastoreo para la producción de leche. 5a Reunión ALPA. Venezuela. p. 89-96.
- GARCIA LOPEZ, R.; MARTINEZ, O.; PONCE, E.; MENCHACA, M.A 1987. Evaluación de dos concentraciones energéticoprotéicas al inicio de la lactancia en vacas Holstein en pastoreo. Rev. Cubana Cienc. Agric. 21: 135-143.
- GARCIA LOPEZ, R.; ELIAS, A.; RUIZ, R.; GOMEZ, R.; MENCHACA, M.A. 1986. Algunos indicadores fisiológicos y del ambiente ruminal en vacas Holstein suplementadas con concentrado. Rev. Cubana Cienc. Agric. 20: 24-31.
- HARESING, W., COLE, D.J. 1988. Corn silage. En: Haresesing, W y Cole, D.J. (Eds) Recent developments in rumen nutrition. 2. University of Nottingham of Agriculture. Butterworths, Inglaterra. p. 185-198.
- HILLMAN, D. 1969. Supplementing corn silage. J. Dairy Sci. 52: 859-870.

- JEREZ, IRMA: PEREZ, MARTA; RIVERO, J.L. 1988. Comparación de la Bermuda cruzada 67 (Cynodon dactylon) con la Guinea común (Panicum maximum) con suplementación o ein suplementación en la producción y composición de la leche. Rev. Cubana Cieno. Agr. 22: 139-145.
- KESLER, E.H.; SPAHR, S.L., 1964. Physiological effects of high level concentrate feeding. J. Dairy Sci. 47: 1122-1128.
- LARKIN, J.C.; FOSCIATE, O.T. 1970. Comparisons of two different systems of feeding dairy cows for three consecutive lactations. J. Dairy Sci. 53: 561-565.
- LEAVER, J.P., CAMPLINNG, R.C.; HOLMES, W. 1968. Use of supplementary feeds for grazing cattle. J. Dairy Sci. 51: 355-364.
- LLAMAS-LAMAS, G.; COMBS, D.K., 1991. Effect of forage to concentrate ratio and intake level on utilization of early vegetative alfalfa silage by dairy cows. J. Dairy Sci. 74: 526-536.
- LUCAS, H.L. 1956. Switch-back trial for more than two treatments. J. Dairy Soi. 39:146-149.
- LUCAS, H.L. 1957. Extra-period latin-square change-over designs. J. Dairy Sci. 40: 225-230.
- LUENGAS, A.; PULIDO, J. 1990. El eneilaje de maíz en la alimentación de bovinos. ICA-Informa. Vol., 24 (2): 13-20.
- McCULLOUGH, M.E.; SISK, L.R.; SELL, O.E. 1964. Influence of silage dry matter intake on efficiency of milk production. J. Dairy Sci. 47. 650-652.
- MEIJS, J.A.C.; HOEKSTRA, J.A. 1984. Concentrate supplementation of grazing dairy cows. 1. Effect of concentrate intake and herbage allowance on herbage intake. Grass and Forage Science. 67: 59-65.
- NATIONAL RESEARCH COUNCIL. 1988. Nutrient requirements of dairy cattle. Washington, D.C. 1988.
- REVILLA, A. 1969. Tecnología de la leche. 2da. Ed. Herrero Hnos. Sucs. S.A. Mexico D.F:
- STRICKLAND, M.J.; LESSELLE, W.J.. 1971. The effects on lactating heifers and cows of feeding different rates of concentrate. Animal Prod. 13: 379-385.

- SUCHINI, B.; PEREZ, C.; SUCHINI, J.; MENDEZ, H.; ORELLANA.
 J.; HERNANDEZ, M. 1986. Suplementación de bovinos
 destinados a la producción de leche, durante la época
 seca en el municipio de Chiquimula. Seminario.
 Chiquimula Guatemala. Universidad de San Carlos de
 Guatemala. Centro Universitario de Oriente. CUNORI.
 64 pp.
- TARAPIA, M.J., DAVERY H.D. 1976. Corn silage supplementation for maximum intake and milk production. J. Dairy Sci. 59:1915-1922.
- THOMAS, C.; THOMAS, P.C. 1988. Factors affecting the mutritive value of grass silages. En: Haresesing, W, y Cole, D.J. (Eds). Recent Developments in rumen nutrition.

 2. University of Nottingham of agriculture. Butterworths, Inglaterra. p. 275-295.
- THOMAS, J.W.; BROWN L.D.; EMERY R.S. 1970. Corn silage compared to alfalfa hay for milking cows when fed various levels of grain. J. Dairy. Sci., 53. 342-350.
- TIRRELL, H.F.; MOE, P.W. 1972. Net energy value for lactation of high and low concentrate ratio containing corn silage. J. Dairy. Sci., 55. 1106-1112.
- VELASQUEZ, M. 1977. Efecto de diferentes niveles de concentrado en la producción de vacas lecheras alimentadas con pasto guinea (<u>Panicum maximum</u>). Tesis Ing. Agr. Escuela Nacional de Agricultura y Ganadería. Managua, Nicaragua. 40 pp.

9. HANKXOS

ANEXO 1.- Análisis de Varianza, producción de leche 1990.

F.V.	G_L_	CUADRADO MEDIO	F
TOTAL CUADRADOS PERIODO ANIMAL PERIODO POR CUADRADO EFECTO DIRECTO EFECTO RESIDUAL EFECTO DIRECTO POR BLOQUE EFECTO RESIDUAL POR BLOQUE EFECTO RESIDUAL POR BLOQUE EFECTO RESIDUAL POR BLOQUE	71 5 3 12 15 2 4 4 24	0.1722 0.2933 0.1723 1.5295 0.4854	0.3548 0.6041 0.3549 3.1507

C.V. = 3.98%

Medias y Varianzas de los Tratamientos.

TRATAMIENTO	EFECTO	EFECTO	EFECTO
	DIRECTO	RESIDUAL	PERMANENTE
1		-0.124	17.482
2		-0.007	17.484
3		0.131	17.603
MEDIA	17.506	0.000	17.506
VARIANZA		0,0269	– -

ANEXO 2.- Análisis de Varianza, producción de grasa 1990.

F.V.	G.L.	CUADRADO MEDIO	F
TOTAL CUADRADOS PERIODO ANIMAL PERIODO POR CUADRADO EFECTO DIRECTO EFECTO RESIDUAL EFECTO DIRECTO POR BLOQUE EFECTO RESIDUAL POR BLOQUE ERROR	71 5 3 12 15 2 2 4 4 24	0.00099 0.00117 0.00396 0.00207 0.00166	0.5929 0.7019 2.3717 1.2443

C.V. = 6.63%

Medias y Varianzas de los Tratamientos.

TRATAMIENTO	EFECTO	EFECTO	EFECTO
	DIRECTO	RESIDUAL	PERMANENTE
1 2	0.616	0.007	0.623
	0.651	-0.008	0.643
MEDIA	0.646 0.637	0.001	0.647 0.637
VARIANZA		0.00009	

ANEXO 3.- Análisis de Varianza, producción de leche 1991.

F.V.	G.L.	CUADRADO MEDIO	F
TOTAL CUADRADOS PERIODO ANIMAL PERIODO POR CUADRADO EFECTO DIRECTO EFECTO RESIDUAL EFECTO DIRECTO POR BLOQUE EFECTO RESIDUAL POR BLOQUE EFECTO RESIDUAL POR BLOQUE EFECTO RESIDUAL POR BLOQUE	71 5 3 12 15 2 2 4 4 24	3.515 0.995 2.535 11.327 2.659	1.322 0.374 0.953 4.259

C.V. = 9.69%

Medias y Varianzas de los Tratamientos.

TRATAMIENTO	EFECTO DIRECTO		EFECTO PERMANENTE
1 2 3	17.06 17.05 16.37	0.076 0.188 -0.264	17.13 17.23 16.1
MEDIA	16.826	0.000	16.826
VARIANZA	0.118	0.1477	0.266

ANEXO 4.- Análisis de Varianza, producción de grasa 1991.

F.V.	G.L.	CUADRADO MEDIO	F
TOTAL CUADRADOS PERIODO ANIMAL PERIODO POR CUADRADO EFECTO DIRECTO EFECTO RESIDUAL	71 5 3 12 15 2	0.0072 0.0061	0.7415 0.6267
EFECTO DIRECTO POR BLOQUE EFECTO RESIDUAL POR BLOQUE ERROR	4 4 24	0.0072 0.0118 0.0097	0.7415 1.1934

C.V. = 15.61%

Medias y Varianzas de los Tratamientos.

TRATAMIENTO			EFECTO PERMANENTE
1 2 3	0.612 0.641 0.645	0.0112 0.0007 -0.012	0.623 0.641 0.633
MEDIA	0.6326	0.0000	0.6326
VARIANZA	0.0004	0.0005	0.0009

ANEXO 5.- Pesos de las vacas al inicio y final de cada período durante 1990.

VACA	INIC	1	2	3	4
1	455	455	456	455	457
2	452	453	453	453	453
3	443	445	443	445	447
4	442	440	440	440	440
5	441	442	440	442	442
6	468	465	465	464	465
7	465	465	465	465	465
8	465	464	463	463	463
9	440	438	437	437	437
10	446	445	445	446	446
11	438	438	44 0	44 0	441
12	465	464	465	465	468
13	460	459	460	460	460
14	460	459	459	459	460
15	435	437	438	438	438
16	437	438	436	436	437
17	437	439	440	440	440
18	440	439	438	439	439

ANKXO 6.- Pesos de las vacas al inicio y final de cada período durante 1991.

VACA INIC 1 2 3 4 1 420 425 422 422 422 2 486 465 468 470 470 3 445 445 443 445 447 4 418 420 420 420 420 5 470 472 470 468 468 6 454 452 450 452 452 7 431 429 431 431 431 431 8 443 445 443 445 445 9 397 397 400 402 10 447 450 450 450 11 404 404 406 409 408 12 500 495 497 500 500 13 452 450 447 447 447 14 490 4			Kg	DE PESO		
2 466 465 468 470 470 3 445 445 443 445 447 4 418 420 420 420 420 5 470 472 470 468 468 6 454 452 450 452 452 7 431 429 431 431 431 431 8 443 445 443 445 445 9 397 397 397 400 402 10 447 450 450 450 450 11 404 404 406 409 408 12 500 495 497 500 500 13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 <th>VACA</th> <th>INIC</th> <th>-</th> <th></th> <th>3</th> <th>4</th>	VACA	INIC	-		3	4
3 445 445 443 445 447 4 418 420 420 420 420 5 470 470 468 466 6 454 452 450 452 452 7 431 429 431 431 431 8 443 445 443 445 445 9 397 397 397 400 402 10 447 450 450 450 450 11 404 404 406 409 409 12 500 495 497 500 500 13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402	1	420	425	422	422	422
4 418 420 420 420 420 5 470 468 466 466 6 454 452 450 452 452 7 431 429 431 431 431 431 8 443 445 443 445 445 9 397 397 400 402 10 447 450 450 450 450 11 404 404 406 409 408 12 500 495 497 500 500 13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402 402	2	466	465	468	470	470
5 470 472 470 468 466 6 454 452 450 452 452 7 431 429 431 431 431 8 443 445 443 445 445 9 397 397 400 402 10 447 450 450 450 450 11 404 404 406 409 409 12 500 495 497 500 500 13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402	3	445	445	443	445	447
6 454 452 450 452 452 7 431 429 431 431 431 8 443 445 443 445 445 9 397 397 400 402 10 447 450 450 450 450 11 404 404 406 409 409 12 500 495 497 500 500 13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402 402	4	418	420	420	420	420
7 431 429 431 431 431 8 443 445 443 445 445 9 397 397 400 402 10 447 450 450 450 450 11 404 404 406 409 409 12 500 495 497 500 500 13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402	5	470	472	470	468	468
8 443 445 443 445 445 9 397 397 397 400 402 10 447 450 450 450 450 11 404 404 406 409 405 12 500 495 497 500 500 13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402	6	454	452	450	452	452
9 397 397 400 402 10 447 450 450 450 450 11 404 404 406 409 409 12 500 495 497 500 500 13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402	7	431	429	431	431	431
9 397 397 400 402 10 447 450 450 450 450 11 404 404 406 409 409 12 500 495 497 500 500 13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402	8	443	445	443	445	445
11 404 404 406 409 409 12 500 495 497 500 500 13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402	9	397	397	397	400	402
12 500 495 497 500 500 13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402	10	447	450	450	450	450
13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402	11	404	404	406	409	409
13 452 450 447 447 447 14 490 488 490 490 493 15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402	12	500	495	497	500	500
15 502 502 504 504 504 16 438 438 436 436 436 17 397 400 402 402 402	13	452	450	447	447	447
16 438 438 436 436 436 17 397 400 402 402 402	14	490	488	490	490	493
17 397 400 402 402 402	15	502	502	504	504	504
17 397 400 402 402 402	16	438	438	436	436	436
					402	402
18 427 428 431 434 434	18	427	429	431	434	434