ESCUELA AGRICOLA PANAMERICANA DEPARTAMENTO DE PROTECCION VEGETAL

CENTRO DE EVALUACION Y MANEJO DE PLAGUICIDAS (CEMPLA)

REPORTE FINAL DE INVESTIGACION

EVALUACION DE DIFERENTES DOSIFICACIONES DEL BACTERICIDA KILOL
(CON Y SIN LA ADICION DE UN INSECTICIDA) Y DIFERENTES
FORMULACIONES DE EXTRACTOS DE SEMILLA DE NIM (Azadirachta indica)
EN EL CULTIVO DE TOMATE EN EL VALLE DEL ZAMORANO
Y EL VALLE DE COMAYAGUA EN HONDURAS

ESCUELA AGRICOLA PANAMERICANA DEPARTAMENTO DE PROTECCION VEGETAL

CENTRO DE EVALUACION Y MANEJO DE PLAGUICIDAS (CEMPLA)

REPORTE FINAL DE INVESTIGACION

EVALUACION DE DIFERENTES DOSIFICACIONES DEL BACTERICIDA KILOL (CON Y SIN LA ADICION DE UN INSECTICIDA) Y DIFERENTES FORMULACIONES DE EXTRACTOS DE SEMILLA DE NIM (<u>Azadirachta indica</u>) EN EL CULTIVO DE TOMATE EN EL VALLE DEL ZAMORANO Y EL VALLE DE COMAYAGUA EN HONDURAS

INDICE GENERAL

		Pay.	IIIa
I.	RESUMEN	• • • •	1
II.	INTRODUCCION	• • • •	2.
III.	MATERIALES Y METODOS	• • • •	4
IV.	RESULTADOS	• • • •	7
v.	CONCLUSIONES	• • • •	15
VI.	RECOMENDACIONES	• • • •	16
VII.	BIBLIOGRAFIA	• • • •	17
VTTT.	ANEXOS		18

EVALUACION DE DIFERENTES DOSIFICACIONES DEL BACTERICIDA KILOL (CON Y SIN LA ADICION DE UN INSECTICIDA) Y DIFERENTES FORMULACIONES DE EXTRACTOS DE SEMILLA DE NIM (<u>Azadirachta indica</u>) EN EL CULTIVO DE TOMATE EN EL VALLE DEL ZAMORANO Y EL VALLE DE COMAYAGUA EN HONDURAS

<u>Investigador Principal</u>: Ing. Mario Bustamante

Coordinador CEMPLA

Depto. Protección Vegetal

Apartado Postal 93

Escuela Agrícola Panamericana

Tegucigalpa, Honduras

<u>Investigadores Colaboradores</u>: Dr. Alfredo Montes

Jefe Departamento de Horticultura

Apartado Postal 93

Escuela Agrícola Panamericana

Tegucigalpa, Honduras

Ing. Pedro Mejía Gerente de Producción Cultivos Palmerola Comayagua, Honduras

<u>Investigadores Asociados</u>: Ing. Oscar Vergara

Agr. Iván Rodríguez Sr. Geovani Zepeda

CEMPLA

Depto. Protección Vegetal

Apartado Postal 93

Escuela Agrícola Panamericana

Tegucigalpa, Honduras

Fecha de Inicio: 17 de diciembre de 1993

Fecha de Finalización: 11 de abril de 1994

I. RESUMEN

Se llevaron a cabo 2 ensayos en tomate, el primero en la Escuela Agrícola Panamericana en el Valle del Zamorano, y el segundo en la empresa Cultivos Palmerola en el Valle de Comayagua.

En ambos ensayos se probaron diferentes dosis del bactericida KILOL, con y sin la adición de un insecticida. También se probaron 2 formulaciones de extractos de la semilla de nim: nim acuoso y nim aceitoso. Hubieron dos tratamientos testigo: el primero llamado testigo del agricultor en el cual se llevaban a cabo las prácticas de fitoprotección normales del productor, y un testigo absoluto, sin aplicaciones de ninguna clase. Se deseaba comprobar si el KILOL tiene algún efecto determinante en la reducción de la incidencia y severidad del ataque de virosis en tomate, transmitida por su principal vector mosca blanca (Bemisia tabaci).

En ambos ensayos se usó un diseño experimental de bloques al azar (BCA), con 10 tratamientos: 3 dosis diferentes de KILOL sólo y combinadas con un insecticida, 2 formulaciones diferentes de extracto de semilla de nim (nim acuoso y nim aceitoso), un testigo del agricultor (con el manejo corriente del productor) y un testigo absoluto sin aplicaciones. Se realizaron 4 repeticiones para cada tratamiento.

En Zamorano, ninguna variable del estudio fue significativa. Esto se debió probablemente a que la época seca en la cual se llevó a cabo el estudio no facilitó el desarrollo de la virosis y la expresión de su incidencia y severidad. En Cultivos Palmerola todas las variables del estudio (con excepción de rendimiento) fueron estadísticamente significativas (P = 0.0001).

En general, se observó que el mejor tratamiento en cuanto a mayor rendimiento, menor incidencia y severidad fue el número 6 (KILOL 4 litros/mz + insecticida). Los demás tratamientos con KILOL también fueron estadísticamente significativos. Los tratamientos en base a diferentes formulaciones de nim no fueron estadísticamente mejores.

II. INTRODUCCION

El tomate es un cultivo de gran importancia económica a nivel centroamericano, tanto para consumo fresco como por su potencial de industrialización y exportación. A nivel hondureño, la producción se encuentra concentrada principalmente en el departamento de Comayagua, donde existe una agroindustria ampliamente desarrollada para su procesamiento y comercialización. Su importancia como cultivo agroindustrial ha aumentado en los últimos años debido a que es una fuente importante de empleo y de generación de divisas para el país. Actualmente, el área cultivada a nivel nacional bordea en promedio las 5,000 manzanas¹. La superficie cultivada varía dependiendo de la temporada de siembra (generalmente se siembra menor cantidad de tomate en invierno que en verano).

Los principales problemas fitosanitarios del cultivo se deben a la presencia de plagas y enfermedades que se han vuelto permanentes en las zonas de producción debido al monocultivo intensivo.

Entre las enfermedades que mayores pérdidas económicas causan a los productores se encuentran principalmente aquellas de origen viral tales como el Virus del Mosaico del Tabaco (VMT), transmitidas por vectores entre los cuales se destaca principalmente la mosca blanca (Bemisia Tabaci). Es una enfermedad devastadora con mayor incidencia en verano, que puede llegar a destruir totalmente la plantación en caso de ataques severos en las etapas juveniles.

Las enfermedades fungosas y bacteriales tienen mayor incidencia en la época invernal. Entre las principales enfermedades fungosas se destacan el tizón temprano (cuyo agente causal es Alternaria solani) y el tizón tardío (causado por Phythopthora infestans). Las principales pudriciones bacteriales son ocasionadas por Pseudomonas solanacearum y Erwinia carotovora. Para combatir las pudriciones bacteriales se usan varios tipos de bactericidas entre los que se destaca KILOL.

KILOL es un bactericida sistémico de origen natural, derivado de extractos de semilla de toronja. Es formulado por PROVEQUI S.A de Costa Rica. El producto actúa sóbre la pared celular, provocando la ruptura de las células bacterianas. Está clasificado dentro de la categoría toxicológica IV (ligeramente tóxico), por lo que puede ser usado intensivamente para el control de enfermedades bacteriales en tomate y otras hortalizas con menos consecuencias nocivas para el medio ambiente y la salud de los operarios. Aún no está aprobado por EPA (Environmental Protection Agency) para ser usado en cultivos hortícolas de exportación hacia los Estados Unidos.

¹ Una manzana equivale a 7,000 m².

Sin embargo, agricultores de Costa Rica han reportado la existencia de un efecto beneficioso preventivo y curativo al actuar como amortiguador de las manifestaciones de virosis en plantaciones de tomate atacadas tempranamente por mosca blanca. Para corroborar si efectivamente existe un efecto sinérgico de KILOL combinado con el uso de insecticidas sobre la virosis en tomate, el Centro de Evaluación y Manejo de Plaguicidas (CEMPLA) de la Escuela Agrícola Panamericana realizó la evaluación de 2 ensayos, el primero en el Valle del Zamorano, y el segundo en la empresa Cultivos Palmerola en el Valle de Comayagua.

En ambos ensayos se probaron diferentes dosis del bactericida KILOL (con y sin la adición de un insecticida), junto con 2 formulaciones de extractos de la semilla de nim: nim acuoso y nim aceitoso. Estos tratamientos se compararon a 2 tratamientos testigo: el primero llamado testigo del agricultor en el cual se llevaban a cabo las prácticas de fitoprotección normales del productor, y un testigo absoluto, sin aplicaciones de ninguna clase.

III. MATERIALES Y METODOS

Las evaluaciones de campo se llevaron a cabo en la Zona 2, lote 23 del Departamento de Horticultura de la Escuela Agrícola Panamericana, Zamorano y en el Rincón III, lote 6 de la empresa Cultivos Palmerola de Comayagua, ambos localizados en Honduras. El primer lote se caracteriza por la siembra intensiva de hortalizas durante todo el año, y la segunda por la siembra intensiva de tomate industrial en 2 épocas de siembra bien delimitadas (verano e invierno).

Zamorano se encuentra a una altura aproximada de 800 m sobre el nivel del mar, con temperaturas promedio anuales de 26 grados centígrados y una precipitación promedio de 1,550 mm durante la temporada lluviosa de mayo a septiembre.

Cultivos Palmerola se encuentra a una altura aproximada de 600 m sobre el nivel del mar, con temperaturas promedio anuales de 28.8 grados centígrados y una precipitación promedio de 1,941 mm durante la temporada lluviosa de mayo a septiembre.

En Zamorano se sembró por transplante el tomate híbrido indeterminado Santa Cruz para consumo fresco el 17 de diciembre de 1993. Las distancias de siembra fueron 20 cm entre plantas y 1 m entre surcos. Se sembró usando el método de hilera simple. Se procuró que el área dedicada a la investigación fuera manejada de igual manera que el cultivo comercial.

En Cultivos Palmerola se sembró por transplante el tomate híbrido determinado M-82 para uso industrial el 20 de enero de 1994. Las distancias de siembra fueron 20 cm entre plantas y 1 m entre surcos. Se sembró usando el método de hilera doble, cubriendo la cama con plástico negro y usando riego por goteo. Se procuró que el área dedicada a la investigación fuera manejada de igual manera que el cultivo comercial por los operarios de la empresa.

El diseño experimental usado fue bloques al azar (BCA), a fín de recoger dentro del error experimental cualquier variación debida a diferencias en los gradientes de concentración encontrados en el terreno (por ejemplo, diferencias debidas a topografía, exceso o falta de riego, exceso o falta de fertilizante, etc), y que no fueran debidas a diferencias concretas entre los tratamientos evaluados.

El experimento constaba de 10 tratamientos: 3 dosis de KILOL sólo, 3 dosis de KILOL junto con un insecticida, 2 formulaciones de nim (nim aceitoso y nim acuoso), 1 testigo del agricultor (donde se llevaban a cabo las prácticas normales del productor) y un testigo absoluto (sin aplicaciones). Se realizaron 4 repeticiones para cada tratamiento. En el anexo 1 se puede observar el cuadro que describe las diferentes formulaciones y dosis usadas.

Cada unidad experimental o parcela útil comprendía 4 surcos de 5 m de longitud, para un total de $20~\text{m}^2$. Los datos se tomaron únicamente de los 2 surcos centrales. La distribución de los tratamientos y sus repeticiones en el terreno se puede observar en el anexo 2.

Los ensayos se montaron durante la época seca en la cuál no se observaron precipitaciones, aunque se alcanzaron bajas temperaturas sobre todo en las primeras horas de la mañana.

Durante el desarrollo reproductivo del cultivo se realizaron en Zamorano 4 aplicaciones de fungicidas (2 veces CUPRAVIT, 1 vez SANDOFAN, 1 vez DITHANE) a los 52 ddt², 57 ddt, 62 ddt y 67 ddt respectivamente. El manejo de enfermedades fue similar en Comayagua.

Las aplicaciones con KILOL en Zamorano se realizaron manualmente a los 3, 6, 10, 13, 17, 22, 27, 32, 38, 42 y 46 ddt respectivamente. Para ello, se usó una bomba de mochila manual marca SOLO con capacidad para 15 litros. Se tomaron datos 1 día antes y 1 día después de las aplicaciones. Para ello, se tomó como parcela útil los 2 surcos centrales de cada parcela (10 m²). El cultivo entró a cosecha el 17 de marzo de 1994, a los 90 ddt.

Las aplicaciones con KILOL en Comayagua se realizaron manualmente a los 2, 9, 15, 21, 28, 34, 40, 47 y 54 ddt respectivamente. Para ello, se usó una bomba de mochila manual marca PROTECNO con capacidad para 17 litros. Se tomaron datos 1 día antes y 1 día después de las aplicaciones. Para ello, se tomó como parcela útil los 2 surcos centrales de cada parcela (10 $\rm m^2$). Se realizó una única cosecha al cultivo el 11 de abril de 1994, a los 81 ddt.

A grandes rasgos, las variables evaluadas fueron:

1. Incidencia del daño por virosis

Implica una medición del daño causado a la planta de tomate por la manifestación de los síntomas de la virosis transmitida por mosca blanca y el ataque de patógenos al follaje. La <u>incidencia</u> fue un porcentaje del número de plantas que presentaban quemaduras en cada parcela.

2. Severidad del daño por virosis

La <u>severidad</u> se midió en cada planta de la parcela con una escala de 0 (área foliar limpia) a 5 (100% del área foliar afectada) para luego ser promediada entre todas las plantas de la parcela.

ddt: días después de transplante.

3. Rendimiento

Se contó en los 10 m² de parcela útil el <u>número de frutos</u> de tamaño grande, mediano y pequeño, y su respectivo peso. También se colectaron datos del número de tomates podridos (aquellos frutos no comercializables por daño de gusanos, malformaciones genéticas, manchas solares, pudriciones fungosas o bacteriales y pudrición apical)

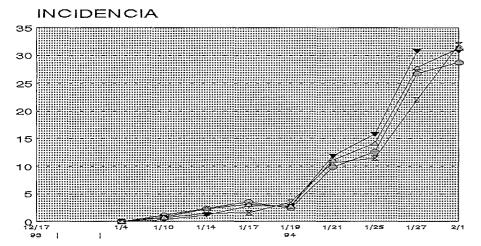
4. Densidad poblacional de mosca blanca

Se contó en los 10 m² de parcela útil el <u>número de moscas</u> <u>blancas</u> adultas.

Las 10 variables del estudio se analizaron por medio del programa estadístico SAS. Los resultados estadísticos del análisis de varianza para cada una de ellas se puede observar en el anexo 3.

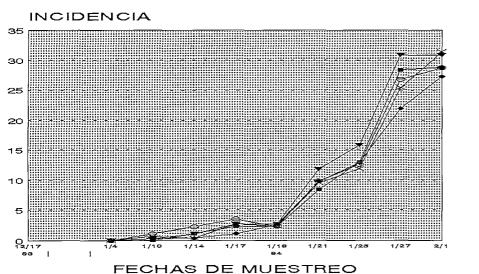
IV. RESULTADOS

'1. Zamorano


La variable rendimiento no fue estadísticamente significativa al 5% de probabilidad para ninguno de los parámetros evaluados (número y peso de frutos grandes, medianos, pequeños y podridos). Al 5% de significancia no se puede afirmar que existe diferencia estadística entre los tratamientos empleados bajo las condiciones en que se llevó a cabo el ensayo en la Escuela Agrícola Panamericana. El cultivo presentó un buen aspecto general durante toda la etapa de crecimiento vegetativo y reproductivo debido al buen manejo agronómico (riego suficiente, tutoreo temprano, fertilización complementaria) y a la escasa presencia de plagas y enfermedades consecuencia de la época seca en que fue sembrado. En este sentido, las plagas y los patógenos no fueron factores significativos en las mermas de producción.

La variable densidad poblacional de mosca blanca tampoco fue estadísticamente significativa al 1% para ninguno de los tratamientos. Sin embargo, se observó una menor cantidad de mosca blanca en los tratamientos 4, 5 y 6 en los que se aplicaba KILOL en combinación con un insecticida. A pesar de ello, las poblaciones de mosca blanca no alcanzaron índices altos como los observados en otras épocas del año.

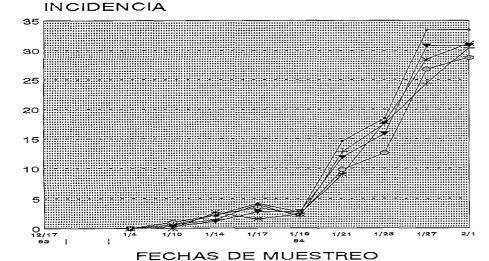
Las variables incidencia y severidad de daño por virosis tampoco fueron estadísticamente significativas al 1% de probabilidad. Sin embargo, se observó a través de los diferentes muestreos que la incidencia de virosis y la severidad del daño a la planta de tomate eran menores en los tratamientos testigo del productor (que comprende la rotación de plaguicidas llevada a cabo por el Departamento de Horticultura de la Escuela Agrícola Panamericana), el tratamiento de nim aceitoso y el tratamiento KILOL 3 litros/mz + insecticida. Debido a su estrecha correlación con la densidad poblacional de mosca blanca (que durante el ensayo se mantuvo baja), las variables incidencia y severidad no fueron significativas.


El siguiente gráfico muestra la incidencia de virosis en el ensayo realizado en Zamorano. Se observa que los tratamientos no fueron significativamente diferentes entre sí, si bien en los muestreos finales sobresalen los tratamientos anteriormente mencionados.

INCIDENCIA DE VIROSIS (%) TOMATE SANTA CRUZ, EL ZAMORANO

→ NIM ACUOSO
→ NIM ACEITOSO
→ HORTICULTURA
→ TESTIGO

FECHAS DE MUESTREO


→ KILOL 5cc/I+INSECTICID

→ KILOL10cc/I+INSECTICID

→ KILOL20cc/I+INSECTICID

→ HORTICULTURA

→ TESTIGO

→ KILOL 5 cc/l

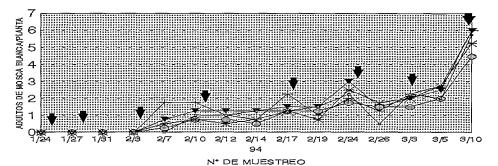
→ KILOL 10 cc/l

→ KILOL 20 cc/l

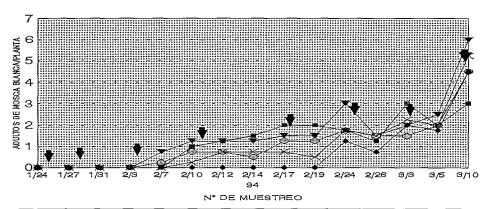
→ HORTICULTURA

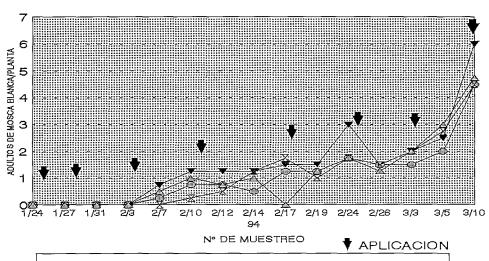
→ TESTIGO

1. Cultivos Palmerola


La variable rendimiento no fue estadísticamente significativa al 5% de probabilidad para los parámetros número y peso de frutos grandes, medianos y pequeños. Sin embargo, la variable frutos podridos fue significativa (P = 0,002). Al 5% de significancia se puede afirmar que existe diferencia estadística entre los tratamientos empleados bajo las condiciones en que se llevó a cabo el ensayo en la empresa Cultivos Palmerola. Los tratamientos que obtuvieron la mejor calidad de fruta fueron el 4, el 6 y el 3 respectivamente. Los tres tienen como característica el uso de KILOL (dos de ellos con la dosis mayor de 4 litros/mz y dos en combinación con un insecticida). Se puede concluír que KILOL tiene un efecto positivo sobre la reducción en la cantidad de frutos con posibilidades de ser estropeados por descoloraciones causadas por virosis, pudriciones bacterianas y fungosas.

La variable densidad poblacional de mosca blanca fue altamente significativa al 5% (P \succeq 0,0001) para tratamientos y muestreos y por medio de la prueba Duncan de separación de medias se observó que el tratamiento que mejor controla mosca blanca es el número 6 (KILOL 4 litros/mz + insecticida), seguido por el 5, 9, 8 y 7 los cuales no fueron estadísticamente diferentes. Con relación a los muestreos, la diferencia estadística consiste en el incremento de las poblaciones de mosca blanca a medida que transcurre el tiempo, incremento que fue recogido en cada fecha de muestreo. En general, las poblaciones de mosca blanca no alcanzaron índices mayores a los observados en otros períodos del año.

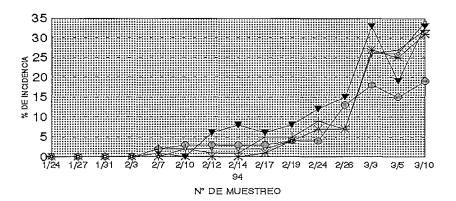

La siguiente gráfica muestra la dinámica poblacional de mosca blanca observada en el lote experimental de Cultivos Palmerola. Las flechas indican el momento en que se llevaron a cabo las aplicaciones de los distintos tratamientos. En forma general se observa el efecto de las aplicaciones sobre las poblaciones de la plaga, y cómo el tratamiento 6 (KILOL 4 litros/mz + insecticida) fue el que mantuvo a la plaga controlada por mucho más tiempo a bajos niveles poblacionales.


DINAMICA POBLACIONAL DE MOSCA BLANCA

TOMATE M-82, CULTIVOS PALMEROLA, COMAYAGUA, HONDURAS

─ KILOL 1L/MZ
 ★ KILOL 2L/Mz
 ★ TESTIGO AGRICULTOR
 ▼ TESTIGO ABSOLUTO
 ▼ APLICACION

→ NIM ACUOSO → NIM ACEITOSO

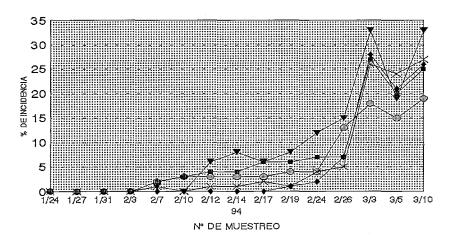

→ TESTIGO AGRICULTOR → TESTIGO ABSOLUTO

La variable incidencia de virosis fue estadísticamente significativa al 5% de probabilidad (P = 0,0001), tanto para tratamientos como para muestreos. Nuevamente, el tratamiento con menor incidencia de virosis en términos porcentuales fue el tratamiento 6 (combinación de KILOL 4 litros/mz e insecticida). Le siguen los tratamientos 5 y 9 que resultaron estadísticamente iguales. Lógicamente, a medida que transcurría el tiempo aumentaba la incidencia por efecto de la acción de la mosca blanca en el cultivo. Este efecto se registró en cada fecha de muestreo.

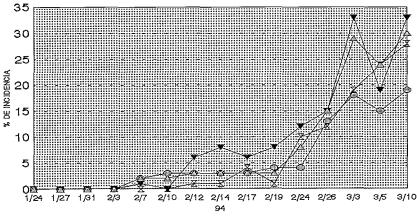
El siguiente gráfico muestra la incidencia de virosis en el ensayo realizado en Cultivos Palmerola. Se observa que el tratamiento 6 es significativamente diferente a los demás, ya que mantiene los menores niveles de incidencia (en promedio) a través del tiempo.

INCIDENCIA DE VIROSIS

TOMATE M-82, CULTIVOS PALMEROLA, COMAYAGUA, HONDURAS



-- KILOL 1L/MZ


+ KILOL 2L/Mz

TESTIGO AGRICULTOR

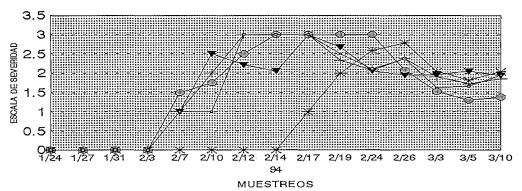
▼ TESTIGO ABSOLUTO

- --- KILOL 1L/Mz+INSECTICID ** KILOL 2L/Mz+INCECTICID
- → KILOL 3L/MZ+INSECTICID TESTIGO AGRICULTOR
- *TESTIGO ABSOLUTO

Nº DE MUESTREO

→ NIM ACUOSO

₹ NIM ACEITOSO

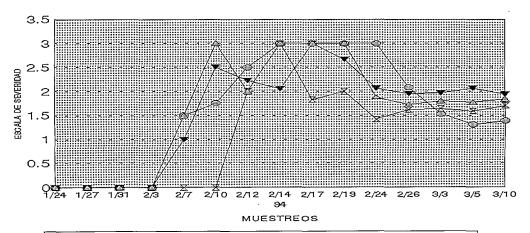

◆ TESTIGO AGRICULTOR → TESTIGO ABSOLUTO


La variable severidad también fue estadísticamente significativa al 5% de probabilidad (P = 0,0001) para tratamientos y muestreos. Nuevamente el tratamiento donde se observó la menor severidad de virosis fue el número 6 (KILOL 4 litros/mz + insecticida). Le siguen los tratamientos 8 y 5 que no fueron estadísticamente diferentes entre sí.

El siguiente gráfico muestra la variación en el tiempo de la severidad producida por virosis en el cultivo de tomate en Cultivos Palmerola. Se observa que el tratamiento 6 mantiene por más tiempo la severidad en su nivel más bajo, lo que incide en la obtención de mayores rendimientos y menor cantidad de frutos descartados.

SEVERIDAD DE VIROSIS

TOMATE M-82, CULTIVOS PALMEROLA, COMAYAGUA, HONDURAS



TESTIGO ABSOLUTO

★ KILOL 1L/Mz+INSECTICID ★ KILOL 2L/Mz+INCECTICID

★ TESTIGO ABSOLUTO

→ NIM ACUOSO → NIM ACEITOSO

→ TESTIGO AGRICULTOR → TESTIGO ABSOLUTO

V. CONCLUSIONES

- 1. Bajo las condiciones en que se desarrolló la evaluación de campo en el Zamorano (tales como topografía, riegos, temperatura, pluviosidad, variedad, manejo agronómico del cultivo, cosecha), no se observó diferencia significativa entre los tratamientos. En el caso de Cultivos Palmerola, se obtuvieron diferencias estadísticas altamente significativas para todas las variables del estudio (con excepción de rendimiento).
- 2. El tratamiento 6 (KILOL 4 litros/mz + insecticida) fue el que presentó los mejores resultados en cuanto a cantidad de frutos podridos, densidad poblacional de mosca blanca, incidencia y severidad de virosis. En general, los tratamientos de KILOL combinados con aplicaciones de insecticida produjeron los mejores resultados.
- 3. El daño por virosis es un daño que limita enormemente la capacidad productiva del cultivo de tomate en Cultivos Palmerola, e incide directamente sobre los rendimientos esperados. El uso de rotaciones de diferentes familias de insecticidas combinados con KILOL puede contribuír a disminuir las pérdidas debidas a transmisión de virosis por mosca blanca.
- 4. KILOL tiene un efecto sinérgico positivo al ser aplicado en combinación con insecticidas comerciales para el control de mosca blanca en tomate: su efecto no sólo se da a nivel de incrementos en el rendimiento si no que en menores proporciones de incidencia y severidad del ataque de virosis. Este efecto no ha sido estudiado a fondo pero puede deberse a las propiedades químicas del producto que influyen en la fisiología del cultivo y la virulencia del patógeno. Otro aspecto favorable para su uso es la no persistencia del producto en el ambiente, su orígen natural, su baja toxicidad y el mínimo riesgo ambiental que implica su uso.
- 5. Las formulaciones con extractos de nim no obtuvieron el efecto deseado en cuanto a incrementar el rendimiento o reducir la incidencia y severidad del ataque de mosca blanca en tomate. Sin embargo, se observó que las formulación en base a nim aceitoso produjo mejores resultados que la formulación en base a nim acuoso.

VI. RECOMENDACIONES

- 1. Se debe realizar una evaluación similar en ambas localidades durante la época invernal para medir con mayor claridad el efecto de KILOL sobre las enfermedades bacteriales y fungosas.
- 2. Se debe realizar otra evaluación donde se modifiquen las dosis usadas de KILOL para determinar un rango óptimo de aplicación. De igual manera, se deben modificar las dosis de nim usadas en la evaluación de campo.
- 3. Se debe realizar una evaluación del producto bajo un sistema de riego por aspersión (que favorezca el desarrollo de enfermedades fungosas y bacterianas) y riego por goteo, para obtener datos de campo acordes con los sistemas de producción vigentes en las dos localidades de este estudio.

VII. BIBLIOGRAFIA

- AGRIOS, G. 1978. Plant Pathology. Academic Press, Inc. New York, 703 p.
- BUCHNER, E. 1992. Metodologías para Cultivar Tomates para Proceso en el Valle de Comayagua (Honduras) Bajo la Limitante de la Mosca Blanca. Fundación Hondureña de Investigación Agrícola (FHIA). La Lima, Honduras. 22 p.
- BUSTAMANTE, M. y MONTERROSO, D. 1986. Aspectos Generales del Desarrollo Agrícola y Principales Problemas Fitosanitarios de los Cultivos en la República de Honduras. Proyecto de Manejo Integrado de Plagas MIP-CATIE/Honduras. Tegucigalpa, Honduras. 61 p.
- GONZALEZ, M. 1988. Diccionario de Especialidades Agroquímicas. Segunda edición, Ediciones PLM, S.A de C.V. México, DF. 645 p.

VIII. ANEXOS

Anexo 1: Protocolo de Investigación

PROTOCOLO LOCALIDAD 001 VIRTH 93 Zona 2, lote 23

Departamento de Horticultura Escuela Agrícola Panamericana

Rincón III, lote 6 Cultivos Palmerola

COMPAÑIA

INVESTIGADORES

PROVEQUI S.A (KILOL)

Mario Bustamante, Alfredo Montes

Pedro Mejía

CULTIVO

Tomate de consumo fresco Santa Cruz,

Tomate industrial M-82

FECHAS SIEMBRA

17 de diciembre de 1993 (Zamorano)

20 de enero de 1994 (Cultivos Palmerola)

Bacteriosis y virosis

ENFERMEDAD

DISEÑO ESTADISTICO

TRATAMIENTOS REPETICIONES

AREA DE LA PARCELA

AREA UTIL

Bloques al azar (BCA)

10

1

4 surcos de 5 m de longitud (20 m^2) 2 surcos de 5 m de longitud (10 m^2)

OBJETIVOS

- 1. Evaluar la severidad del daño causado por virosis, transmitida al tomate por Bemisia tabaci.
- 2. Evaluar la eficacia de KILOL para reducir el efecto del daño por virus y otros patógenos (<u>Erwinia</u>, <u>Pseudomonas</u>, <u>Phythopthora</u>, <u>Alternaria</u>) a diferentes dosis y en combinación con insecticidas.
- 3. Evaluar el control que ejerce nim en 2 formulaciones (extracto acuoso y aceitoso) sobre las poblaciones de mosca blanca.
- 4. Evaluar las prácticas de fitoprotección tradicionales del productor en relación a los tratamientos propuestos.

TRATAMIENTOS

Número de Tratamiento	Producto	Dosis (ml por manzana)
1 2 3 4 5 6 7 8	KILOL SOLO KILOL SOLO KILOL SOLO KILOL+INSECTICIDA KILOL+INSECTICIDA KILOL+INSECTICIDA NIM ACUOSO NIM ACEITOSO	1,000 2,000 4,000 1,000 + INSECTICIDA 2,000 + INSECTICIDA 4,000 + INSECTICIDA 1,000 1,000
9 10	TESTIGO AGRICULTOR TESTIGO ABSOLUTO	DE ACUERDO AL MANEJO

ZAMORANO: NUMERO DE APLICACIONES DE KILOL + INSECTICIDA, ROTACIONES DE PRODUCTOS Y DOSIS DEL INSECTICIDA

#	Fecha	Rotación insecticidas	Dosis (ml/Mz)
1 2 3 4 5	20/12/93 23/12/93 27/12/93 30/12/93 03/01/94 08/01/94	KILOL + VYDATE KILOL + THIODAN KILOL + DANITOL KILOL + TALSTAR KILOL + SUMITHION KILOL + TAMBO	500 400 200 200 500 500
7 8 9 10 11	13/01/94 18/01/94 24/01/94 28/01/94 02/02/94	KILOL + PERFEKTHION KILOL + ORTHENE KILOL + VYDATE KILOL + TALSTAR KILOL + THIODAN	400 500 gr 500 200 400

CULTIVOS PALMEROLA: NUMERO DE APLICACIONES DE KILOL + INSECTICIDA, ROTACIONES DE PRODUCTOS Y DOSIS DEL INSECTICIDA

#	Fecha	Rotación insecticidas	Dosis (ml/Mz)
1	21/01/94	KILOL + VYDATE	500
2	28/01/94	KILOL + THIODAN	400
3	04/02/94	KILOL + DANITOL	200
4	11/02/94	KILOL + TALSTAR	200
5	18/02/94	KILOL + SUMITHION	500
6	25/02/94	KILOL + TAMBO	500
7	04/03/94	KILOL + H 500	400
8	11/03/94	KILOL + ORTHENE	500 gr
9	18/03/94	KILOL + VERTIMEC	100

Anexo 2: Croquis de Campo

Zamorano: distribución de tratamientos en las parcelas

3	7	8	5
6	9	2	7
5	1	5	3
4	3	6	4
8	10	9	1
2	8	4	10
9	6	7	6
10	2	1	8
7	4	3	2
1	5	10	9

Cultivos Palmerola: distribución de tratamientos en las parcelas

3	7	8	5
6	9	2	7
5	1	5	3
4	. 3	б	4
8	10	9	1
2	8	4	10
9	6	7	6
10	2	1	8
7	4	3	2
1	5	10	9

SAS

General Linear Models Procedure Class Level Information

Class	Levels	Values
TRAT	10	1 2 3 4 5 6 7 8 9 10
MUESTR	15	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
REP	4	1 2 3 4

Number of observations in data set = 600

Group	0bs	Dependent Variables
1	273	SEVERIDAD
Group	0bs	Dependent Variables
2	600	VVV

 $\ensuremath{\mathsf{NOTE}}\xspace$. Variables in each group are consistent with respect to the presence or absence of missing values.

Dependent Variable: SEVERIDAD					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
		•	·		
Model	99	77.20795053	0.77987829	3.62	0.0001
Error	173	37.31231372	0.21567811		
Corrected Total	272	114.52026424			
	R-Square	c.v.	Root MSE	SEVE	RIDA Mean
	0.674186	23.22885	0.464412	1	.99928828
Dependent Variabl	e: SEVERIDAD	1			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT MUESTR REP TRAT*MUESTR	9 10 3 77	11.92371607 33.60891484 0.50039259 31.17492702	1.32485734 3.36089148 0.16679753 0.40486918	6.14 15.58 0.77 1.88	0.0001 0.0001 0.5104 0.0004
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT MUESTR REP TRAT*MUESTR	9 10 3 77	9.35299743 30.33015615 1.02809752 31.17492702	1.03922194 3.03301561 0.34269917 0.40486918	4.82 14.06 1.59 1.88	0.0001 0.0001 0.1938 0.0004

SAS

General Linear Models Procedure Class Level Information

Class	Levels	Values
TRAT	10	1 2 3 4 5 6 7 8 9 10
MUESTR	15	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
REP	4	1 2 3 4

Number of observations in data set = 600

Dependent Variab	le: SEVERIDAD				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	22	46.03302350	2.09241016	7.64	0.0001
Error	250	68.48724074	0.27394896		
Corrected Total	272	114.52026424			
	R-Square	C.V.	Root MSE	SEVE	RIDA Mean
	0.401964	26.17938	0.523401	1	.99928828
Dependent Variab	ole: SEVERIDAD)			
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT MUESTR REP	9 10 3	11.92371607 33.60891484 0.50039259	1.32485734 3.36089148 0.16679753	4.84 12.27 0.61	0.0001 0.0001 0.6098
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT MUESTR REP	9 10 3	8.70052077 33.80284097 0.50039259	0.96672453 3.38028410 0.16679753	3.53 12.34 0.61	0.0004 0.0001 0.6098

General Linear Models Procedure

Duncan's Multiple Range Test for variable: SEVERIDAD

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 250 MSE= 0.273949 Harmonic Mean of cell sizes= 25.99262

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 0.288 0.303 0.313 0.320 0.326 0.331 0.335 0.338 0.341

Means with the same letter are not significantly different.

Duncan Grouping		Mean	N	TRAT
	A	2.175	24	3
В	A A	2.142	33	10
В В	A A	2.123	25	2
В В	A A	2.105	31	7
В В	A	2.078	36	4
В В	A A	2.066	31	1
В В	A A	. 2.044	29	9
B B	С	1.830	23	5
	C C	1.704	25	8
	D	1.361	16	6

General Linear Models Procedure

Duncan's Multiple Range Test for variable: SEVERIDA

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 250 MSE= 0.273949 Harmonic Mean of cell sizes= 18.9323

Number of Means 2 3 4 5 6 7 8 9 10 11 Critical Range 0.338 0.355 0.367 0.375 0.382 0.388 0.393 0.397 0.400 0.403

Means with the same letter are not significantly different.

Duncan Gr	oupi	ng		Mean	N	MUESTR
		A		2.690	14	8
В		A A		2.614	19	9
B B		A A	С	2.439	22	10
В В		D	C	2.262	14	7
E		D D	C	2.136	35	12
E E	F	D D	C	2.081	29	11
E				2.000	11	6
E F E F G			1.773	40	13	
	F F	G G		1.738	40	15
		G G H		1.627 1.167	40 9	14 5

SAS

General Linear Models Procedure Class Level Information

Class	Levels	Values
TRAT	10	1 2 3 4 5 6 7 8 9 10
MUESTR	15	1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
REP	4	1 2 3 4

Number of observations in data set = 600

SAS

General Linear Models Procedure

Dependent Variable:	INCIDENCIA	O	w		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	26	3664.133333	140.928205	112.58	0.0001
Error	573	717.265000	1.251771		
Corrected Total	599	4381.398333			
R-	-Square	C.V.	Root MSE	IN	ICIDEN Mean
0.	.836293	62.09949	1.118826	1	.80166667

SAS

General Linear Models Procedure

Dependent Variable: INCIDENCIA

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	61.481667	6.831296	5.46	0.0001
MUESTR	14	3580.273333	255.733810	204.30	0.0001
REP	3	22.378333	7.459444	5.96	0.0005
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	61.481667	6.831296	5.46	0.0001
MUESTR	14	3580.273333	255.733810	204.30	0.0001
REP	3	22.378333	7.459444	5.96	0.0005

General Linear Models Procedure

Duncan's Multiple Range Test for variable: INCIDENCIA

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $% \left(1\right) =\left(1\right) \left(1\right$

Alpha= 0.05 df= 573 MSE= 1.251771

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 0.406 0.427 0.440 0.450 0.459 0.466 0.471 0.476 0.480

Means with the same letter are not significantly different.

ıncan G	roup	ing		Mean	N	TRAT
		Α		2.550	60	10
		B B		2.033	60	7
C C		B B	D D D D D D D D D D D D D D D D D D D	1.933	60	2
C		B B		1.900	60	1
C	E E	B B		1.850	60	4
C	E	B B		1.700	60	3
C	E	В			1.667	60
C	E		D D	1.517	60	5
	Ε		D	1.450	60	9
	E			1.417	60	6

General Linear Models Procedure

Duncan's Multiple Range Test for variable: INCIDENCIA

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $% \left(1\right) =\left(1\right) \left(1\right$

Alpha= 0.05 df= 573 MSE= 1.251771

Number of Means 2 3 4 5 6 7 8 Critical Range 0.497 0.523 0.539 0.551 0.562 0.570 0.577

Number of Means 9 10 11 12 13 14 15 Critical Range 0.583 0.588 0.592 0.595 0.598 0.601 0.603

Means with the same letter are not significantly different.

SAS 16:25 Friday, May 27, 1994 8

General Linear Models Procedure

Duncan Group	ping		Mean	N	MUESTR
	Α		7.125	40	15
	В		6.475	40	13
	С		5.875	40	14
	D		2.375	40	12
	E		1.750	40	11
	F		0.925	40	10
G	F F		0.800	40	9
G G	F	н	0.575	40	8
G G	F F	Н Н	0.525	40	7
G G		H H	0.350	40	6
G G		H H	0.250	40	5
		H H	0.000	40	4
		H H	0.000	40	1
		H H	0.000	40	2
		H H	0.000	40	3

SAS General Linear Models Procedure Class Level Information

Class	Levels	Values
TRAT	10	0 1 2 3 4 5 6 7 8 9
FECHA	8	ABR0294 ABR0594 ABR0994 ABR1394 MAR1794 MAR2194 MAR2494 MAR2894
REP	4	1 2 3 4 Number of observations in data set = 320 SAS

General Linear Models Procedure
NOTE: Due to missing values, only 203 observations can be used in this

analysis.

SAS General Linear Models Procedure

Dependent Variabl	e: PRODHEC				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	91	5636433289	61938827	7.54	0.0001
Error	111	911520490	8211896		
Corrected Total	202	6547953779			
	R-Square	C.V.	Root MSE	PRODHEC M	
	0.860793	23.30412 SAS	2865.641	12	2296.7117
		it wilden	1		

General Linear Models Procedure

Dependent \	Variable:	PRODHEC
-------------	-----------	---------

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	143937035	15993004	1.95	0.0523
REP	3	61515916	20505305	2.50	0.0634
FECHA	6	4508301011	751383502	91.50	0.0001
TRAT*REP	27	301934873	11182773	1.36	0.1344
TRAT*FECHA	46	620744454	13494445	1.64	0.0182
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	134132286	14903587	1.81	0.0732
REP	3	73664643	24554881	2.99	0.0341
FECHA	6	3845055874	640842646	78.04	0.0001
TRAT*REP	27	305083034	11299372	1.38	0.1267
TRAT*FECHA	46	620744454	13494445	1.64	0.0182

General Linear Models Procedure
Duncan's Multiple Range Test for variable: PRODHEC

NOTE: This test controls the type I comparisonwise error rate, not

the experimentwise error rate

Alpha= 0.05 df= 111 MSE= 8211896

WARNING: Cell sizes are not equal.

Harmonic Mean of cell sizes= 20.24375

Number of Means 2 3 4 5 6 7 8 9 10

Critical Range 1789 1882 1941 1986 2023 2054 2079 2100 2117

Means with the same letter are not significantly different. SAS

General Linear Models Procedure

Duncan Group	ing			Mean	N	TRAT
	A			13393.7	20	0
В	A			13228.7	20	1
В В	A A		•	13149.3	21	8
B B	A			13020.1	23	6
B B	A A	С		12184.6	19	4
B B	A A	C		12135.4	20	9
B B	A A	C		11842.7	20	7
В В	A A	C C		11765.4	20	2
B B		C		11281.5	19	5
		C		10831.5	21	3

General Linear Models Procedure Class Level Information

Class Levels Values

TRAT 10 0 1 2 3 4 5 6 7 8 9

REP 4 1 2 3 4

Number of observations in by group = 40

Group Obs Dependent Variables

1 25 NGRAN PGRAN

Group Obs Dependent Variables

2 40 NMED PMED NPEQ PPEQ PODRI

 $\ensuremath{\mathsf{NOTE}}\xspace$ Variables in each group are consistent with respect to the presence or absence of missing values.

Dependent Variable	e: NGRAN				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	397.5457729	33.1288144	2.33	0.0783
Error	12	170.4542271	14.2045189		
Corrected Total	24	568.0000000			
	R-Square	C.V.	Root MSE		NGRAN Mean
	0.699905	36.94989	3.768888		10.2000000
Day and a to Mariable	. NODAN				
Dependent Variable	e: NGRAN				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9	165.5833333 231.9624396	18.3981481 77.3208132	1.30 5.44	0.3311 0.0135
KCP	5	231.7024370	11.5200152	2-44	0.010
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	125.8314872 231.9624396	13.9812764 77.3208132	0.98 5.44	0.4979 0.0135
KLF	,	231.7024370	77.5200132	2.77	0.0133
Dependent Variable	e: PGRAN				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	22.61379228	1.88448269	1.98	0.1256
Error	12	11.42694372	0.95224531		
Corrected Total	24	34.04073600			
	R-Square	c.v.	Root MSE		PGRAN Mean
	0.664316	25.27011	0.975831		3.86160000

Dependent Variable: PGRAN					
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	12.57320267 10.04058961	1.39702252 3.34686320	1.47 3.51	0.2631 0.0491
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	9.34878485 10.04058961	1.03875387 3.34686320	1.09 3.51	0.4339 0.0491
Dependent Variable: NMED					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	7613.700000	634.475000	1.62	0.1449
Error	27	10580.200000	391.859259		
Corrected Total	39	18193.900000			
	R-Square	C.V.	Root MSE		NMED Mean
	0.418475	26.73253	19.79544		74.0500000
Dependent Variable: NMED					
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9	5328.400000 2285.300000	592.044444 761.766667	1.51 1.94	0.1944 0.1463
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	5328.400000 2285.300000	592.044444 761.766667	1.51 1.94	0.1944 0.1463
Dependent Variable: PMED					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	255.3972000	21.2831000	1.48	0.1910
Error	27	387.4087900	14.3484737		
Corrected Total	39	642.8059900			
	R-Square	c.v.	Root MSE		PMED Mean
	0.397316	27.41009	3.787938		13.8195000
Dependent Variable: PMED					
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	116.4610900 138.9361100	12.9401211 46.3120367	0.90 3.23	0.5373 0.0381
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	116.4610900 138.9361100	12.9401211 46.3120367	0.90 3.23	0.5373 0.0381

Dependent Varīabl	le: NPEQ	S∪m of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	12	18258.40000	1521.53333	2.84	0.0118
Error	27	14463.97500	535.70278		
Corrected Total	39	32722.37500			
	R-Square	C.V.	Root MSE		NPEQ Mean
	0.557979	23.34956	23.14525		99.1250000
Dependent Variab	le: NPEQ				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	1190.12500 17068.27500	132.23611 5689.42500	0.25 10.62	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	1190.12500 17068.27500	132.23611 5689.42500	0.25 10.62	
Dependent Variable: PPEQ					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	121.0915500	10.0909625	1.29	0.2782
Error	27	210.6964100	7.8035707		
Corrected Total	39	331.7879600			
	R-Square	C.V.	Root MSE		PPEQ Mean
	0.364967	23.52212	2.793487		11.8760000
Dependent Variabl	le: PPEQ				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	25.57401000 95.51754000	2.84155667 31.83918000	0.36 4.08	
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9	25.57401000 95.51754000	2.84155667 31.83918000	0.36 4.08	0.9423 0.0164
Dependent Variabl	le: PODRI				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	200.5000000	16.7083333	0.94	0.5266
Error	27	481.4000000	17.8296296		
Corrected Total	39	681.9000000			
	R-Square	C.V.	Root MSE		PODRI Mean
	0.294031	40.02384	4.222515		10.5500000

Dependent \	/ariable:	PODRI
-------------	-----------	-------

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	178.4000000	19.8222222	1.11	0.3879
REP	3	22.1000000	7.3666667	0.41	0.7449
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	178.4000000	19.8222222	1.11	0.3879
REP	3	22.1000000	7.3666667	0.41	0.7449

General Linear Models Procedure Class Level Information

Class	Levels	Values
TRAT	10	0 1 2 3 4 5 6 7 8 9
REP	4	1 2 3 4

Number of observations in by group = 40

Group	.0bs	Dependent Variables
1	16	NGRAN PGRAN
Group	0bs	Dependent Variables
2	40	NMED PMED NPEQ PPEQ PODR

 $\ensuremath{\mathsf{NOTE}}\xspace$. Variables in each group are consistent with respect to the presence or absence of missing values.

Dependent Variable: NGRAN					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	40.10416667	3.34201389	4.30	0.1282
Error	3	2.33333333	0.77777778		
Corrected Total	15	42.43750000			
	R-Square	c.v.	Root MSE	1	NGRAN Mean
	0.945017	14.25321	0.881917	i	6.18750000
Dependent Variabl	e: NGRAN				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	35.10416667 5.00000000	3.90046296 1.66666667	5.01 2.14	0.1058 0.2737
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	24.91666667 5.00000000	2.76851852 1.66666667	3.56 2.14	0.1621 0.2737

le: PGRAN						
DF	Sum of Squares	Mean Square	F Value Pr	> F		
12	4.80933333	0.40077778	2.99 0.1	996		
3	0.40266667	0.13422222				
15	5.21200000					
R-Square	C.V.	Root MSE	PGRAN M	ean		
0.922742	12.46134	0.366364	2.94000	000		
le: PGRAN						
DF	Type I SS	Mean Square	F Value Pr	> F		
9 3	3.92726667 0.88206667	0.43636296 0.29402222				
DF	Type III SS	Mean Square	F Value Pr	> F		
9 3	2.91427619 0.88206667	0.32380847 0.29402222		532 681		
e- NMED						
	Sum of Squares	Mean Square	F Value Pr	> F		
	•	·				
			,,,,,			
39		,				
R-Square	c.v.	Root MSE	NMED M	ean		
0.350786	39.75948	20.60535	51.8250	000		
	.,	·				
9 3	3632.025000 2562.075000	403.558333 854.025000				
DF	Type III SS	Mean Square	F Value Pr	> F		
9 3	3632.025000 2562.075000	403.558333 854.025000				
Dependent Variable: PMED						
DF	Sum of Squares	Mean Square	F Value Pr	> F		
12	227.0570000	18.9214167	1.80 0.0	996		
27	283.6607500	10.5059537				
39	510.7177500					
R-Square	c.v.	Root MSE	PMED M	ean		
0.444584	32.79827	3.241289	9.88250	000		
	DF 12 3 15 R-Square 0.922742 e: PGRAN DF 9 3 DF 9 3 e: NMED DF 12 27 39 R-Square 0.350786 e: NMED DF 9 3 DF 9 3 DF 9 3 R-Square 0.350786	DF Squares 12 4.80933333 3 0.40266667 15 5.21200000 R-Square C.V. 0.922742 12.46134 DF Type I SS 9 3.92726667 3 0.88206667 DF Type III SS 9 2.91427619 3 0.88206667 DF Squares 12 6194.100000 27 11463.675000 39 17657.775000 R-Square C.V. 0.350786 39.75948 DF Type I SS 9 3632.025000 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS 9 3632.025000 3 2562.075000 DF Type I II SS	Sum of Squares Square	DF Squares Square F Value Pr 12 4.80933333 0.40077778 2.99 0.1 3 0.40266667 0.13422222 15 5.21200000 R-Square C.V. Root MSE PGRAN M 0.922742 12.46134 0.366364 2.94000 e: PGRAN DF Type I SS Mean Square F Value Pr 9 3.92726667 0.43636296 3.25 0.1 3 0.88206667 0.29402222 2.19 0.2 DF Type III SS Mean Square F Value Pr 9 2.91427619 0.32380847 2.41 0.2 9 2.91427619 0.32380847 2.41 0.2 0.88206667 0.29402222 2.19 0.2 e: NMED DF Squares Square F Value Pr 12 6194.100000 516.175000 1.22 0.3 27 11463.675000 424.580556 39 17657.775000 R-Square C.V. Root MSE NMED M 0.350786 39.75948 20.60535 51.8250 e: NMED DF Type I SS Mean Square F Value Pr 9 3632.025000 403.558333 0.95 0.5 3 2562.075000 403.558333 0.95 0.		

Dependent	Variable:	PMED

•					
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	117.5902500 109.4667500	13.0655833 36.4889167	1.24 3.47	0.3111 0.0297
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9	117.5902500 109.4667500	13.0655833 36.4889167	1.24 3.47	0.3111 0.0297
Dependent Variab	le: NPEQ				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	9102.300000	758.525000	0.84	0.6115
Error	27	24384.100000	903.114815		
Corrected Total	39	33486.400000			
	R-Square	C.V.	Root MSE		NPEQ Mean
	0.271821	33.28003	30.05187	9	0.3000000
Dependent Variab	le: NPEQ				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	7363.900000 1738.400000	818.211111 579.466667	0.91 0.64	0.5341 0.5949
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	7363.900000 1738.400000	818.211111 579.466667	0.91 0.64	0.5341 0.5949
Dependent Variab	le: PPEQ				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	71.84308000	5.98692333	0.70	0.7388
Error	27	231.33963000	8.56813444		
Corrected Total	39	303.18271000			
	R-Square	C.V.	Root MSE		PPEQ Mean
	0.236963	27.72304	2.927138	. 1	0.5585000
Dependent Variab	ole: PPEQ				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	69.38801000 2.45507000	7.70977889 0.81835667	0.90 0.10	0.5389 0.9619
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	69.38801000 2.45507000	7.70977889 0.81835667	0.90 0.10	0.5389 0.9619

Dependent Variable: PODRI					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	82.40000000	6.86666667	1.51	0.1801
Error	27	122.57500000	4.53981481		
Corrected Total	39	204.97500000			
	R-Square	c.v.	Root MSE		PODRI Mean
	0.402000	35.65999	2.130684		5.97500000
Dependent Variable: PODRI					
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	74.72500000 7.67500000	8.30277778 2.55833333	1.83 0.56	0.1087 0.6437
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	74.72500000 7.67500000	8.30277778 2.55833333	1.83 0.56	0.1087 0.6437

General Linear Models Procedure Class Level Information

Class	Levels	Values
TRAT	10	0 1 2 3 4 5 6 7 8 9
REP	4	1 2 3 4

Number of observations in by group = 40

Group	0bs	Dependent Variables
1	2	NGRAN PGRAN
2	40	NMED PMED NPEQ PPEQ
3	39	PODRI

NOTE: Variables in each group are consistent with respect to the presence or absence of missing values.

Dependent Variabl	e: NGRAN	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	1	2.00000000	2.00000000	-	-
Error	0	•			
Corrected Total	1	2.00000000			
	R-Square	c.v.	Root MSE		NGRAN Mean
	1.000000	0	0		9.00000000

Source	DF	Type I SS	Mean Square	F Value P	r > F
		• • •	·	, vacue	
TRAT REP	1	2.00000000 0.00000000	2.00000000	:	•
Source	DF	Type III SS	Mean Square	F Value P	r > F
TRAT REP	1 0	2.00000000 0.00000000	2.00000000	:	
		• •		i .	
Dependent Var Source	iable: PGRAN	Sum of Squares	Mean Square	F Value P	r > F
Model	1	1.80500000	1.80500000	_	_
Error	0			-	
4		* * *	•		
Corrected Tot		1.80500000			
	R-Square	C-V-	Root MSE	PGRAN	Mean
	1.000000	0	0	5.050	00000
Dependent Var	iable: PGRAN		<i>.</i>		
Source	DF	Type I SS	Mean Square	F Value P	r > F
TRAT REP	1 0	1.80500000 0.00000000	1 80500000	• •	
Source	DF	Type III SS	Mean Square	F Value P	r > F
TRAT REP	1 0	1.80500000	1.80500000	:	
Dependent Var	iable: NMED				
Source	DF	Sum of Squares	Mean Square	F Value P	г > F
Model	12	12427.00000	1035.58333	3.01 0	.0086
Error	27	9304.10000	344.59630		
Corrected Tot	al 39	21731.10000	1.3		
	R-Square	C.V.	Root MSE	NMED	Mean
	0.571853	31.92314	18.56331	58.15	00000
Dependent Var	iable: NMED		***		
Source	DF	Type I SS	Mean Square	F Value P	r > F
TRAT REP	9 3	4886.100000 7540.900000	542.900000 2513.633333		.1729 .0010
Sources	As DF	Type III SS	Mean Square	F Value P	r > F
	e 9	4886.100000	542:900000	1.58 0	

Class	Levels	Values
TRAT	10	0 1 2 3 4 5 6 7 8 9
REP	4	1 2 3 4

Number of observations in by group = 40

Group Obs Dependent Variables

0 0 NGRAN PGRAN

Group Obs Dependent Variables

1 40 NMED PMED NPEQ PPEQ PODRI

 $\ensuremath{\mathsf{NOTE}}\xspace$. Variables in each group are consistent with respect to the presence or absence of missing values.

Dependent Variab	le: NMED				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	5590.600000	465.883333	1.19	0.3374
Error	27	10556.500000	390.981481		
Corrected Total	39	16147.100000			
	R-Square	c.v.	Root MSE		NMED Mean
	0.346229	31.81537	19.77325	•	62.1500000
Dependent Variable: NMED					
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	1908.100000 3682.500000	212.011111 1227.500000	0.54 3.14	0.8306 0.0416
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9	1908.100000 3682.500000	212.011111 1227.500000	0.54 3.14	0.8306 0.0416
Dependent Variab	le: PMED				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	105.9250000	8.8270833	1.46	0.1988
Error	27	162.8500000	6.0314815		
Corrected Total	39	268.7750000			
	R-Square	C.V.	Root MSE		PMED Mean
	0.394103	23.00616	2.455907		10.6750000

Dependent Variable: PPEQ

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	50.21125000	5.57902778	0.67	0.7292
REP	3	54.01275000	18.00425000	2.16	0.1161
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	50.21125000	5.57902778	0.67	0.7292
REP	3	54.01275000	18.00425000	2.16	0.1161

Dependent Variabl	e: PODRI	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	12	93.40000000	7.78333333	1.90	0.0804
Error	27	110.37500000	4.08796296		
Corrected Total	39	203.77500000			
	R-Square	C.V.	Root MSE		PODRI Mean
	0.458349	37.26951	2.021871		5.42500000
Dependent Variab	le: PODRI				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	56.52500000 36.87500000	6.28055556 12.29166667	1.54 3.01	0.1856 0.0477
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9	56.52500000 36.87500000	6.28055556 12.29166667	1.54 3.01	0.1856 0.0477

General Linear Models Procedure Class Level Information

Class	Levels	Values
TRAT	10	0 1 2 3 4 5 6 7 8 9
REP	4	1 2 3 4

Dependent Variab	le: NGRAN	_			
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	5014.500000	417.875000	1.94	0.0741
Error	27	5805.900000	215.033333		
Corrected Total	39	10820.400000			
	R-Square	c.v.	Root MSE	. 1	NGRAN Mean
	0.463430	34.74885	14.66401		42.2000000
Dependent Variable: NGRAN					
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	4080.900000 933.600000	453.433333 311.200000	2.11 1.45	0.0649 0.2510
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	4080.900000 933.600000	453.433333 311.200000	2.11 1.45	0.0649 0.2510

Dependent Variabl	e: PGRAN	Cum of	Mean		
Source	DF	Sum of Squares	Square	F Value	Pr > F
Model	12	326.3455300	27.1954608	1.94	0.0743
Error	27	378.2040475	14.0075573		
Corrected Total	39	704.5495775			
	R-Square	C.V.	Root MSE		PGRAN Mean
	0.463197	33.35190	3.742667		11.2217500
Dependent Variabl	e: PGRAN				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	279.4488025	31.0498669	2.22	0.0532
REP	3	46.8967275	15.6322425	1.12	0.3599
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	279.4488025 46.8967275	31.0498669 15.6322425	2.22 1.12	0.0532 0.3599
Dependent Variab	le: NMED	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	12	12636.90000	1053.07500	3.86	0.0017
Error	27	7359.10000	272.55926		
Corrected Total	39	19996.00000			
	R-Square	c.v.	Root MSE		NMED Mean
	0.631971	34.39452	16.50937		48.0000000
Dependent Variab	le: NMED				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	6786.500000 5850.400000	754.055556 1950.133333	2.77 7.15	0.0196 0.0011
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	6786.500000 5850.400000	754.055556 1950.133333	2.77 7.15	0.0196 0.0011
Dependent Variab	le: DMEN				
		Sum of	Mean	F Value	Dn > "
Source	DF	Squares	Square		Pr > F
Model	12	498.9180000	41.5765000	4.20	0.0009
Error	27	267.0354400	9.8902015		
Corrected Total	39	765.9534400	<u> </u>		
	R-Square	C.V.	Root MSE		PMED Mean
	0.651369	32.48161	3.144869		9.68200000

Dependent Variable: PMED

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	326.2230400 172.6949600	36.2470044 57.5649867	3.66 5.82	0.0042 0.0033
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	326.2230400 172.6949600	36.2470044 57.5649867	3.66 5.82	0.0042 0.0033
Dependent Variab	le: NPEQ	Q., f			
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	841.5000000	70.1250000	0.84	0.6104
Error	27	2250.9000000	83.3666667		
Corrected Total	39	3092.4000000			
	R-Square	c.v.	Root MSE		NPEQ Mean
	0.272119	74.23199	9.130535		12.3000000
Dependent Varîab	le: NPEQ				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9	641.9000000 199.6000000	71.3222222 66.5333333	0.86 0.80	0.5741 0.5058
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	641.9000000 199.6000000	71.3222222 66.5333333	0.86 0.80	0.5741 0.5058
Dependent Variab	le: PPEQ				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	19.15628000	1.59635667	0.98	0.4902
Error	27	43.94291000	1.62751519		
Corrected Total	39	63.09919000			
	R-Square	C.V.	Root MSE		PPEQ Mean
	0.303590	67.48167	1.275741		1.89050000
Dependent Variab	le: PPEQ				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	13.88409000 5.27219000	1.54267667 1.75739667	0.95 1.08	0.5019 0.3743
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	13.88409000 5.27219000	1.54267667 1.75739667	0.95 1.08	

Dependent Variabl	e: PODRI	cum af	W		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	7433.600000	619.466667	2.37	0.0307
Error	27	7060.375000	261.495370		
Corrected Total	39	14493.975000			
	R-Square	C.V.	Root MSE		PODRI Mean
	0.512875	81.98134	16.17082		19.7250000
Dependent Variabl	e: PODRI				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	3175.725000 4257.875000	352.858333 1419.291667	1.35 5.43	0.2590 0.0047
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	3175.725000 4257.875000	352.858333 1419.291667	1.35 5.43	0.2590 0.0047

General Linear Models Procedure Class Level Information

Class	Levels	Values
TRAT	10	0 1 2 3 4 5 6 7 8 9
REP	4	1 2 3 4

Dependent Variabl	e: NGRAN	Sum of	Maan		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	588.7000000	49.0583333	0.98	0.4939
Error	27	1356.6750000	50.2472222		
Corrected Total	39	1945.3750000			
	R-Square	C.V.	Root MSE		NGRAN Mean
	0.302615	38.57702	7.088528		18.3750000
Dependent Variabl	e: NGRAN				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	229.6250000 359.0750000	25.5138889 119.6916667	0.51 2.38	0.8559 0.0915
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	229.6250000 359.0750000	25.5138889 119.6916667	0.51 2.38	0.8559 0.0915

Dependent Variabl	e: PGRAN		.,		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	16.08265000	1.34022083	0.44	0.9326
Error	27	82.50652750	3.05579731		
Corrected Total	39	98.58917750			
	R-Square	C.V.	Root MSE		PGRAN Mean
	0.163128	41.90289	1.748084		4.17175000
Dependent Variabl	e: PGRAN				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	7.84300250 8.23964750	0.87144472 2.74654917	0.29 0.90	0.9731 0.4546
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9	7.84300250 8.23964750	0.87144472 2.74654917	0.29 0.90	0.9731 0.4546
Dependent Variabl	.e: NMED				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	1796.300000	149.691667	2.10	0.0531
Error	27	1921.475000	71.165741		
Corrected Total	39	3717.775000			
	R-Square	c.v.	Root MSE		NMED Mean
	0.483165	34.32748	8.435979		24.5750000
Dependent Variabl	.e: NMED				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	871.0250000 925.2750000	96.7805556 308.4250000	1.36 4.33	0.2543 0.0129
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	871.0250000 925.2750000	96.7805556 308.4250000	1.36 4.33	0.2543 0.0129
Dependent Variabl	e: PMED				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	38.16267000	3.18022250	1.65	0.1371
Error	27	52.16406750	1.93200250		
Corrected Total	39	90.32673750			
	R-Square	C.V.	Root MSE		PMED Mean
	0.422496	34.20400	1.389965		4.06375000

Dependent	Variable:	PMED
Dependence	Tu, labet.	

		T ., • = =	W 6 ::		. . =
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9	27.80526250 10.35740750	3.08947361 3.45246917	1.60 1.79	0.1657 0.1734
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	3	27.80526250 10.35740750	3.08947361 3.45246917	1.60 1.79	0.1657 0.1734
Dependent Variab	le: NPEQ		.,		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	2245.600000	187.133333	4.52	0.0006
Error	27	1118.175000	41.413889		
Corrected Total	39	3363.775000			
	R-Square	C.V.	Root MSE		NPEQ Mean
	0.667583	31.27758	6.435362		20.5750000
Dependent Variab	le: NPEQ				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	588.525000 1657.075000	65.391667 552.358333	1.58 13.34	0.1718 0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9	588.525000 1657.075000	65.391667 552.358333	1.58 13.34	0.1718 0.0001
Dependent Varīab	le: PPFO				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	64.32974000	5.36081167	1.06	0.4291
Error	27	136.70949750	5.06331472		
Corrected Total	39	201.03923750			
	R-Square	c.v.	Root MSE		PPEQ Mean
	0.319986	92.55243	2.250181		2.43125000
Dependent Variab	le: PPEQ				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9	53.06421250 11.26552750	5.89602361 3.75517583	1.16 0.74	0.3556 0.5365
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	53.06421250 11.26552750	5.89602361 3.75517583	1.16 0.74	0.3556 0.5365

Dependent Variabl	e: PODRI	C	W		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	51.40000000	4.28333333	1.11	0.3942
Error	27	104.50000000	3.87037037		
Corrected Total	39	155.90000000			
	R-Square	c.v.	Root MSE		PODRI Mean
	0.329699	33.06430	1.967326		5.95000000
Dependent Variable: PODRI					
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	26.90000000 24.50000000	2.98888889 8.16666667	0.77 2.11	0.6427 0.1224
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	26.9000000 24.50000000	2.98888889 8.16666667	0.77 2.11	0.6427 0.1224

General Linear Models Procedure Class Level Information

Class	Levels	Values
TRAT	10	0 1 2 3 4 5 6 7 8 9
REP	4	1 2 3 4

Dependent Variab	le: NGRAN				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	1108.100000	92.341667	4.20	0.0010
Error	27	594.300000	22.011111		
Corrected Total	39	1702.400000			
	R-Square	c.v.	Root MSE		NGRAN Mean
	0.650905	39.75932	4.691600		11.8000000
Dependent Variab	le: NGRAN				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9	139.9000000 968.2000000	15.5444444 322.7333333	0.71 14.66	0.6981 0.0001
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	139.9000000 968.2000000	15.5444444 322.7333333	0.71 14.66	0.6981 0.0001

Dependent Variab	e- DCDAN				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	53.89033000	4.49086083	2.33	0.0330
	27	51.97871000		2.33	0.0330
Error			1.92513741		
Corrected Total	39	105.86904000			
	R-Square	c.v.	Root MSE		PGRAN Mean
	0.509028	46.76418	1.387493		2.96700000
Dependent Variab	le: PGRAN				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	8.00619000 45.88414000	0.88957667 15.29471333	0.46 7.94	0.8870 0.0006
Source	DF	Type III SS	Mean Square	F Value	Pr > f
TRAT REP	9 3	8.00619000 45.88414000	0.88957667 15.29471333	0.46 7.94	0.8870 0.0006
Dependent Variab	le: NMED				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	2650.800000	220.900000	1.97	0.0700
Error	27	3027.175000	112.117593		
Corrected Total	39	5677.975000			
	R-Square	C.V.	Root MSE		NMED Mean
	0.466857	28.21735	10.58856		37.5250000
Dependent Variab	le: NMED				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	1460.725000 1190.075000	162.302778 396.691667	1.45 3.54	0.2177 0.0279
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	1460.725000 1190.075000	162.302778 396.691667	1.45 3.54	0.2177 0.0279
Dependent Variab	le: PMED				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	110.5514000	9.2126167	2.05	0.0587
Error	27	121.0506400	4.4833570		
Corrected Total	39	231.6020400			
So, reduce rotat		C.V.	Root MSE		PMED Mean
	R-Square				
	0.477333	36.33763	2.117394		5.82700000

Dependent Variab	le: PMED					
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
TRAT REP	9 3	74.08864000 36.46276000	8.23207111 12.15425333	1.84 2.71	0.1073 0.0647	
Source	DF	Type III \$S	Mean Square	F Value	Pr ≯ F	
TRAT REP	9 3	74.08864000 36.46276000	8.23207111 12.15425333	1.84 2.71	0.1073 0.0647	
Dependent Variab	le: NPEQ					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	12	907.6000000	75.6333333	0.53	0.8780	
Error	27	3873.3750000	143.4583333			
Corrected Total	39	4780.9750000				
	R-Square	C.V.	Root MSE		NPEQ Mean	
	0.189836	46.02271	11.97741		26.0250000	
Dependent Variab	le: NPEQ					
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
TRAT REP	9 3	260.7250000 646.8750000	28.9694444 215.6250000	0.20 1.50	0.9918 0.2362	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
TRAT REP	9 3	260.7250000 646.8750000	28.9694444 215.6250000	0.20 1.50	0.9918 0.2362	
Dependent Variab	le: PPEQ					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	12	11.83535000	0.98627917	0.56	0.8542	
Error	27	47.54580000	1.76095556			
Corrected Total	39	59.38115000				
	R-Square	C.V.	Root MSE		PPEQ Mean	
	0.199312	49.74733	1.327010		2.66750000	
Dependent Variable: PPEQ						
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
TRAT REP	9 3	4.40860000 7.42675000	0.48984444 2.47558333	0.28 1.41	0.9752 0.2626	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
TRAT REP	9 3	4.40860000 7.42675000	0.48984444 2.47558333	0.28 1.41	0.9752 0.2626	

Dependent Variable	e: PODRI	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	12	63.50000000	5.29166667	1.03	0.4522
Error	27	138.90000000	5.14444444		
Corrected Total	39	202.40000000			
	R-Square	c.v.	Root MSE	Р	ODRI Mean
	0.313735	39.79187	2.268137	5	.70000000
Dependent Variabl	e: PODRI				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	32.90000000 30.60000000	3.6555556 10.20000000	0.71 1.98	0.6944 0.1403
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	32.90000000 30.60000000	3.6555556 10.20000000	0.71 1.98	0.6944 0.1403

General Linear Models Procedure Class Level Information

Class	Levels	Values
TRAT	10	0 1 2 3 4 5 6 7 8 9
REP	4	1 2 3 4

Dependent Variable: NGRAN							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	12	1028.600000	85.716667	3.50	0.0034		
Error	27	662.175000	24.525000				
Corrected Total	39	1690.775000					
	R-Square	c.v.	Root MSE		NGRAN Mean		
	0.608360	69.99678	4.952272		7.07500000		
Dependent Variabl	Dependent Variable: NGRAN						
Source	DF	Type I SS	Mean Square	F Value	Pr > F		
TRAT REP	9 3	233.5250000 795.0750000	25.9472222 265.0250000	1.06 10.81	0.4231 0.0001		
Source	DF	Type III SS	Mean Square	F Value	Pr > F		
TRAT REP	9 3	233.5250000 795.0750000	25.9472222 265.0250000	1.06 10.81	0.4231 0.0001		

Dependent Variab	le: PGRAN				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	90.06097000	7.50508083	3.30	0.0049
Error	27	61.44970750	2.27591509		
Corrected Total	39	151.51067750			
	R-Square	C.V.	Root MSE		PGRAN Mean
	0.594420	57.87335	1.508614		2.60675000
Dependent Variab	le: PGRAN				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	30.85630250 59.20466750	3.42847806 19.73488917	1.51 8.67	0.1959 0.0003
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	30.85630250 59.20466750	3.42847806 19.73488917	1.51 8.67	0.1959 0.0003
Dependent Variab	le: NMED				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	7262.800000	605.233333	2.26	0.0383
Error	27	7227.975000	267.702778		
Corrected Total	39	14490.775000			
	R-Square	C.V.	Root MSE		NMED Mean
	0.501202	34.57290	16.36163		47.3250000
Dependent Variab	le: NMED				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	964.525000 6298.275000	107.169444 2099.425000	0.40 7.84	0.9239 0.0006
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	964.525000 6298.275000	107.169444 2099.425000	0.40 7.84	0.9239 0.0006
Dependent Variab	le: PMED		_		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	286.6472700	23.8872725	2.86	0.0113
Error	27	225.1853075	8.3401966		
Corrected Total	39	511.8325775			
	R-Square	C.V.	Root MSE		PMED Mean
	0.560041	34.20008	2.887940		8.44425000

Dependent Variab	le: PMED				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	60.9439025 225.7033675	6.7715447 75.2344558	0.81 9.02	0.6097 0.0003
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	60.9439025 225.7033675	6.7715447 75.2344558	0.81 9.02	0.6097 0.0003
Dependent Variab	le: NPEQ				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	4562.200000	380.183333	1.54	0.1713
Error	27	6677.400000	247.311111		
Corrected Total	39	11239.600000			
	R-Square	c.v.	Root MSE		NPEQ Mean
	0.405904	31.07930	15.72613	!	50.6000000
Dependent Variab	le: NPEQ				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	3599.600000 962.600000	399.955556 320.866667	1.62 1.30	0.1603 0.2955
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9	3599.600000 962.600000	399.955556 320.866667	1.62 1.30	0.1603 [°] 0.2955
Dependent Variab	le: PPEQ				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	37.54300000	3.12858333	0.73	0.7148
Error	27	116.41300000	4.31159259		
Corrected Total	39	153.95600000			
	R-Square	C.V.	Root MSE		PPEQ Mean
	0.243855	31.99441	2.076437		6.49000000

Dependent Varīable:	PPEQ				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	36.21100000 1.33200000	4.02344444 0.44400000	0.93 0.10	0.5131 0.9576
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	36.21100000 1.33200000	4.02344444 0.44400000	0.93 0.10	0.5131 0.9576

Dependent Variabl	e: PODRI	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	12	91.00000000	7.58333333	2.07	0.0566
Error	27	98.77500000	3.65833333		
Corrected Total	39	189.77500000			
	R-Square	C.V.	Root MSE		PODRI Mean
	0.479515	36.95994	1.912677		5.17500000
Dependent Variable: PODRI					
Source	DF	Type I SS	Mean Square	F Value	Pr > f
TRAT REP	9 3	75.52500000 15.47500000	8.39166667 5.15833333	2.29 1.41	0.0461 0.2614
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	75.52500000 15.47500000	8.39166667 5.15833333	2.29 1.41	0.0461 0.2614

SAS

Class	Levels	Values
FECHA	1	10294
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variable: NMB					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	12.00000000	1.00000000	3.39	0.0041
Error	27	7.97500000	0.29537037		
Corrected Total	39	19.97500000			
	R-Square	c.v.	Root MSE		NMB Mean
	0.600751	23.88923	0.543480		2.27500000
Dependent Variable: NMB					
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	7.72500000 4.27500000	0.85833333 1.42500000	2.91 4.82	0.0153 0.0081
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	7.72500000 4.27500000	0.85833333 1.42500000	2.91 4.82	0.0153 0.0081

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 0.29537

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 1.065 1.111 1.143 1.164 1.182 1.196 1.208 1.218 1.226

Means with the same letter are not significantly different.

Duncan Gro	ouping	Mean	N	TRAT
	A	3.000	4	1.
	A A	3.000	4	10
В	A A	2.500	4	9
В В	A A	2.500	4	6
В В	A A	2.250	4	8
B B	A A	2.000	4	3
B B	A A	2.000	4	5
B B	A A	2.000	4	4
B B		1.750	4	7
B B		1.750	4	2

SAS

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	10394
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variab	Le: NMB				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	34.00000000	2.83333333	2.13	0.0501
Error	27	35.90000000	1.32962963		
Corrected Total	39	69.90000000			
	R-Square	c.v.	Root MSE		NMB Mean
	0.486409	22.83358	1.153096		5.05000000

Dependent Variable: NMB

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	20.90000000	2.3222222	1.75	0.1265
REP	3	13.10000000	4.36666667	3.28	0.0359
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	20.90000000	2.3222222	1.75	0.1265
REP	3	13.10000000	4.36666667	3.28	0.0359

SAS

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 1.32963

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 2.261 2.357 2.425 2.470 2.507 2.538 2.563 2.584 2.601

Means with the same letter are not significantly different.

Ouncan Grouping	Mean	N	TRA
Α	6.000	4	9
A A	6.000	4	6
A A	6.000	4	4
A A	5.250	4	2
A A	5.000	4	5
A A	5.000	4	8
A A	4.750	4	3
A A	4.250	4	7
A A	4.250	4	1
A A	4.000	4	10

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	20194
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Number of observations in by group = 40

General Linear Models Procedure

Dependent Variable: NMB						
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F	
Model	12	23.20000000	1.93333333	2.03	0.0625	
Error	27	25.77500000	0.95462963			
Corrected Total	39	48.97500000				
	R-Square	C.V.	Root MSE		NMB Mean	
	0.473711	100.2104	0.977051		0.97500000	
Dependent Variabl	e: NMB					
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
TRAT REP	9	19.72500000 3.47500000	2.19166667 1.15833333	2.30 1.21	0.0460 0.3238	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
TRAT REP	9 3	19.72500000 3.47500000	2.19166667 1.15833333	2.30 1.21	0.0460 0.3238	

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $% \left(1\right) =\left(1\right) \left(1\right$

Alpha= 0.01 df= 27 MSE= 0.95463

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 1.915 1.997 2.055 2.093 2.125 2.151 2.172 2.189 2.204

Means with the same letter are not significantly different.

Duncan Groupir	ng	Mean	N	TRAT
	A A	2.750	4	10
B B	A A	1.250	4	6
B B	A A	1.250	4	2
B B	A A	1.000	4	1
В В	A A	1.000	4	4
B B	A A	0.750	4	3
B B	A A	0.750	4	5
В В	Ä	0.750	4	7
B B		0.250	4	8
В		0.000	4	9

Class	Levels	Values
FECHA	1	40194
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variabl	le: NMB				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	53.50000000	4.45833333	4.23	0.0009
Error	27	28.47500000	1.05462963		
Corrected Total	39	81.97500000			
	R-Square	C.V.	Root MSE		NMB Mean
	0.652638	80.54523	1.026952	,	1.27500000
Dependent Variab	ie- NMR				
Dependent variable	ce. Milb				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	47.22500000 6.27500000	5.24722222 2.09166667	4.98 1.98	0.0005 0.1402
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	47.22500000 6.27500000	5.24722222 2.09166667	4.98 1.98	0.0005 0.1402

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 1.05463

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 2.013 2.099 2.160 2.200 2.233 2.260 2.283 2.301 2.316

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	TRAT
Α	4.250	4	10
В В	1.500	4	3
В В	1.250	4	1
В В	1.250	4	5
В В	1.250	4	7
В В	1.250	4	9
В В	1.000	4	2
В В	0.500	4	8
В В	0.500	4	6
В	0.000	4	4

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	40294
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1234

Dependent Variabl	e: NMB				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	15.40000000	1.28333333	2.25	0.0389
Error	27	15.37500000	0.56944444		
Corrected Total	39	30.77500000			
	R-Square	C.V.	Root MSE		NMB Mean
	0.500406	45.05167	0.754615		1.67500000

Dependent Variable: NMB

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	10.52500000	1.16944444	2.05	0.0718
REP	3	4.87500000	1.62500000	2.85	0.0558
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	10.52500000	1.16944444	2.05	0.0718
REP	3	4.87500000	1.62500000	2.85	0.0558

SAS

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 0.569444

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 1.479 1.543 1.587 1.616 1.641 1.661 1.677 1.691 1.702

Means with the same letter are not significantly different.

General Linear Models Procedure

Duncan Grouping	Mean	N	TRAT
A	2.500	4	9
A A	2.500	4	10
A A	2.000	4	1
A A	1.750	4	8
A A	1.750	4	2
A A	1.500	4	3
A A	1.500	4	7
A A	1.250	4	6
A A	1.000	4	5
A A	1.000	4	4
Α	1.000	4	4

Class	Levels	Values
FECHA	1	70194
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variable: NMB Sum of Mean						
Source	DF	Squares	Square	F Value	Pr > .F	
Model	12	66.60000000	5.55000000	1.45	0.2023	
Error	27	103.00000000	3.81481481			
Corrected Total	39	169.60000000				
	R-Square	c.v.	Root MSE		NMB Mean	
	0.392689	67.35018	1.953155	:	2.90000000	
Dependent Variab	le: NMB					
Source	DF	Type I SS	Mean Square	F Value	Pr > F	
TRAT REP	9 3	47.60000000 19.00000000	5.28888889 6.33333333	1.39 1.66	0.2427 0.1990	
Source	DF	Type III SS	Mean Square	F Value	Pr > F	
TRAT	9	47.60000000	5.28888889	1.39	0.2427	

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

Alpha= 0.01 df= 27 MSE= 3.814815

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 3.829 3.993 4.108 4.184 4.247 4.299 4.342 4.376 4.406

Means with the same letter are not significantly different.

TRAT
10
8
7
2
1
3
4
9
6
5

Class	Levels	Values
FECHA	1	80294
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variable: NMB							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	12	9.10000000	0.75833333	1.12	0.3846		
Error	27	18.27500000	0.67685185				
Corrected Total	39	27.37500000					
	R-Square	c.v.	Root MSE		NMB Mean		
	0.332420	59.83346	0.822710	1	.37500000		
Dependent Variab	le: NMB						
Source	DF	Type I SS	Mean Square	F Value	Pr > F		
TRAT REP	9 3	8.62500000 0.47500000	0.95833333 0.15833333	1.42 0.23	0.2304 0.8719		
Source	DF	Type III SS	Mean Square	F Value	Pr > F		
TRAT REP	9	8.62500000 0.47500000	0.95833333 0.15833333	1.42 0.23	0.2304 0.8719		

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 0.676852

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 1.613 1.682 1.730 1.762 1.789 1.811 1.829 1.843 1.856

Means with the same letter are not significantly different.

Mean	N	TRAT
2.250	4	10
2.000	4	4
1.500	4	3
1.500	4	7
1.500	4	8
1.250	4	1
1.250	4	5
1.000	4	9
0.750	4	6
0.750	4	2
	2.250 2.000 1.500 1.500 1.500 1.250 1.250 1.000 0.750	2.250 4 2.000 4 1.500 4 1.500 4 1.500 4 1.250 4 1.250 4 1.000 4 0.750 4

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	90194
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variabl	.e: NMB				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	59.50000000	4.95833333	2.33	0.0333
Error	27	57.47500000	2.12870370		
Corrected Total	39	116.97500000			
	R-Square	c.v.	Root MSE		NMB Mean
	0.508656	52.57686	1.459008		2.77500000

Dependent Variable: NMB

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9 . 3	53.22500000	5.91388889	2.78	0.0192
REP		6.27500000	2.09166667	0.98	0.4156
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	53.22500000	5.91388889	2.78	0.0192
REP	3	6.27500000	2.09166667	0.98	0.4156

SAS

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

Alpha= 0.01 df= 27 MSE= 2.128704

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 2.860 2.982 3.068 3.125 3.173 3.211 3.243 3.269 3.291

Means with the same letter are not significantly different.

uncan Grouping	Mean	N	TRAT
A	6.000	4	10
A B A	3.250	4	9
B 8	3.000	4	7
B B	2.500	4	2
B B	2.500	4	5
В В	2.250	4	8
B B	2.250	4	1
B B	2.250	4	6
B B	2.000	4	3
B B	1.750	4	4

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	140194
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variabl	Dependent Variable: NMB Sum of Mean						
Source	DF	Squares	Square	F Value	Pr > F		
Model	12	18.80000000	1.56666667	0.67	0.7626		
Error	27	62.97500000	2.33240741				
Corrected Total	39	81.77500000					
	R-Square	C.V.	Root MSE		NMB Mean		
	0.229899	44.59043	1.527222		3.42500000		
Dependent Variabl	e: NMB						
Source	DF	Type I SS	Mean Square	F Value	Pr > F		
TRAT REP	9 3	15.52500000 3.27500000	1.72500000 1.09166667	0.74 0.47	0.6700 0.7070		
Source	DF	Type III SS	Mean Square	F Value	Pr > F		
TRAT REP	9 3	15.52500000 3.27500000	1.72500000 1.09166667	0.74 0.47	0.6700 0.7070		

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $% \left(1\right) =\left(1\right) \left(1\right$

Alpha= 0.01 df= 27 MSE= 2.332407

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 2.994 3.122 3.212 3.271 3.321 3.362 3.395 3.422 3.445

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	TRAT
A	5.000	4	10
A A	3.750	4	7
A A	3.500	4	8
A A	3.500	4	6
A A	3.500	4	2
. A A	3.250	4	9
A A	3.250	4	5
A A	3.000	4	3
A A	3.000	4	1
A A	2.500	4	4

Class	Levels	Values
FECHA	1	150294
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variable: NMB							
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F		
Model	12	13.40000000	1.11666667	0.85	0.6047		
Error	27	35.57500000	1.31759259				
Corrected Total	39	48.97500000					
	R-Square	c.v.	Root MSE		NMB Mean		
	0.273609	56.68466	1.147864	2	2.02500000		
Dependent Variab	le: NMB						
Source	DF	Type I SS	Mean Square	F Value	Pr > F		
TRAT REP	9 3	8.72500000 4.67500000	0.96944444 1.55833333	0.74 1.18	0.6732 0.3348		
Source	DF	Type III SS	Mean Square	F Value	Pr > F		
TRAT REP	9 3	8.72500000 4.67500000	0.96944444 1.55833333	0.74 1.18	0.6732 0.3348		

General Linear Models Procedure

Duncan's Multiple Range Test for Variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 1.317593

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 2.250 2.346 2.414 2.459 2.496 2.527 2.552 2.572 2.589

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	TRAT
A	3.000	4	3
A A	2.750	4	9
A A	2.000	4	2
A A	2.000	4	10
A A	2.000	4	5
A A	2.000	4	7
. A A	1.750	4	4
A A	1.750	4	1
A A	1.500	4	8
A A	1.500	4	6

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	170194
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variable: NMB					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	57.30000000	4.77500000	1.45	0.2027
Error	27	88.67500000	3.28425926		
Corrected Total	39	145.97500000			
	R-Square	c.v.	Root MSE		NMB Mean
	0.392533	48.65107	1.812253		3.72500000

Dependent Variable: NMB

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	37.22500000	4.13611111	1.26	0.3028
REP	3	20.07500000	6.69166667	2.04	0.1323
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	37.22500000	4.13611111	1.26	0.3028
REP	3	20.07500000	6.69166667	2.04	0.1323

SAS

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 3.284259

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 3.553 3.705 3.811 3.882 3.941 3.989 4.028 4.061 4.088

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	TRAT
A	5.500	4	8
A A	5.000	4	3
A A	4.500	4	7
A A	4.000	4	9
A A	3.500	4	10
A A	3.500	4	5
A A	3.250	4	1
Α	3.000	4	
A A			4
A A	2.500	4	6
Α	2.500	4	2

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	180294
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variable: NMB					
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	13.10000000	1.09166667	0.76	0.6840
Error	27	38.80000000	1.43703704		
Corrected Total	39	51.90000000			
	R-Square	c.v.	Root MSE		NMB Mean
	0.252408	48.92918	1.198765		2.45000000
Dependent Variab	le: NMB				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	9.40000000 3.70000000	1.0444444 1.23333333	0.73 0.86	0.6808 0.4746
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	9.40000000 3.70000000	1.04444444	0.73 0.86	0.6808 0.4746

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $\,$

Alpha= 0.01 df= 27 MSE= 1.437037

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 2.350 2.450 2.521 2.568 2.607 2.639 2.665 2.686 2.704

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	TRAT
A	3.250	4	1
A A	3.000	4	4
A A	2.750	4	2
A A	2.750	4	8
A A	2.500	4	5
A A	2.500	4	10
A A	2.250	4	7
A A	2.000	4	3
A A	1.750	4	9
A A	1.750	4	6

Class	Levels	Values
FECHA	1	190194
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variab	le: NMB				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	25.70000000	2.14166667	1.47	0.1953
Error	27	39.27500000	1.45462963		
Corrected Total	39	64.97500000			
	R-Square	C.V.	Root MSE		NMB Mean
	0.395537	40.54051	1.206080	2	.97500000
Dependent Variab	le: NMB				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	15.22500000 10.47500000	1.69166667 3.49166667	1.16 2.40	0.3565 0.0898
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	15.22500000 10.47500000	1.69166667 3.49166667	1.16 2.40	0.3565 0.0898

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 1.45463

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 2.364 2.465 2.536 2.583 2.623 2.655 2.681 2.702 2.720

Means with the same letter are not significantly different.

General Linear Models Procedure

Duncan Grouping	Mean	N	TRAT
A	4.000	4	7
A A	3.500	4	1
A A	3.250	4	4
A A	3.250	4	3
A A	3.000	4	6
A A	3.000	4	8
A A	2.750	4	5
Α	2.750	4	2
A A			
A A	2.750	. 4	9
A	1.500	4	10

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	191293
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variabl	e: NMB				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	1.80000000	0.15000000	0.89	0.5713
Error	27	4.57500000	0.16944444		
Corrected Total	39	6.37500000			
	R-Square	c.v.	Root MSE		NMB Mean
	0.282353	329.3090	0.411636		0.12500000

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	1.12500000	0.12500000	0.74	0.6716
REP	3	0.67500000	0.22500000	1.33	0.2859
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	1.12500000	0.12500000	0.74	0.6716
REP	3	0.67500000	0.22500000	1.33	0.2859

SAS

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

Alpha= 0.01 df= 27 MSE= 0.169444

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 0.807 0.841 0.866 0.882 0.895 0.906 0.915 0.922 0.928

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	TRAT
A	0.500	4	2
A A	0.250	4	1
A A	0.250	4	7
A A	0.250	4	9
A A	0.000	4	4
A A	0.000	4	6
A A	0.000	4	3
A A	0.000	4	8
A A	0.000	4	5
A A	0.000	4	10

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	211293
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variabl	e: NMB	Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	12	0.80000000	0.06666667	0.64	0.7875
Error	27	2.80000000	0.10370370		
Corrected Total	39	3.60000000			
	R-Square	c.v.	Root MSE		NMB Mean
	0.222222	322.0306	0.322031		0.10000000
Dependent Variabl	le: NMB				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	0.60000000 0.20000000	0.06666667	0.64 0.64	0.7508 0.5941
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	0.60000000 0.20000000	0.06666667 0.06666667	0.64 0.64	0.7508 0.5941

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 0.103704

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 0.631 0.658 0.677 0.690 0.700 0.709 0.716 0.722 0.726

Duncan Grouping	Mean	N	TRAT
А	0.250	4	9
A A	0.250	4	6
, А А	0.250	4	3
A A	0.250	4	7
A A	0.000	4	4
A A	0.000	4	2
A A	0.000	4	5
A A	0.000	4	8
A A	0.000	4	1
A A	0.000	4	10

Class	Levels	Values
FECHA	1	220294
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variab	le: NMB				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	27.00000000	2.25000000	1.36	0.2458
Error	27	44.77500000	1.65833333		
Corrected Total	39	71.77500000			
	R-Square	c.v.	Root MSE		NMB Mean
	0.376176	29.10199	1.287763		4.42500000
Dependent Variab	lor NMP				
peperident variable	te. Milb				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	6.52500000 20.47500000	0.72500000 6.82500000	0.44 4.12	0.9027 0.0158
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	6.52500000 20.47500000	0.72500000 6.82500000	0.44 4.12	0.9027 0.0158

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 1.658333

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 2.525 2.632 2.708 2.758 2.800 2.835 2.862 2.886 2.905

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	TRAT
A	5.500	4	6
A A	4.750	4	10
A A	4.500	4	4
A A	4.250	4	1
A A	4.250	4	7
A A	4.250	4	5
A A	4.250	4	9
A A	4.250	4	8
A A	4.250	4	2
A A	4.000	4	3

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	221293
TRAT	10	1 2 3 4 5 6 7 8 9 10
RFP	4	1 2 3 4

Dependent Variabl	.e: NMB	Q C	Veen		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	2.70000000	0.22500000	0.88	0.5755
Error	27	6.90000000	0.2555556		
Corrected Total	39	9.60000000			
	R-Square	C.V.	Root MSE		NMB Mean
	0.281250	505.5250	0.505525		0.10000000

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	2.10000000	0.23333333	0.91	0.5286
REP	3	0.60000000	0.20000000	0.78	0.5140
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	2.10000000	0.23333333	0.91	0.5286
REP	3	0.60000000	0.20000000	0.78	0.5140

SAS

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 0.255556

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 0.991 1.033 1.063 1.083 1.099 1.113 1.124 1.133 1.140

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	TRAT
A	0.750	4	3
A A	0.250	4	9
A A	0.000	4	2
A A	0.000	4	4
A A	0.000	4	5
A A	0.000	4	6
A A	0.000	4	7
A A	0.000	4	8
A A	0.000	4	1
Α			
Α	0.000	4	10

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	250194
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variab	le: NMB				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	60.50000000	5.04166667	3.32	0.0047
Error	27	41.00000000	1.51851852		
Corrected Total	39	101.50000000			
	R-Square	C.V.	Root MSE		NMB Mean
	0.596059	44.81025	1.232282		2.75000000
Dependent Variable: NMB					
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	37.00000000 23.50000000	4.11111111 7.83333333	2.71 5.16	0.0218 0.0060
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	37.00000000 23.50000000	4.11111111 7.83333333	2.71 5.16	0.0218 0.0060

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 1.518519

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 2.416 2.519 2.592 2.640 2.680 2.712 2.739 2.761 2.780

Duncan Grouping	Mean	N	TRAT
A A	4.750	4	10
B A B A	3.750	4	1
B A B A	3.250	4	9
B A B A	3.000	4	2
B A B A	2.750	4	3
B A B A	2.500	4	8
B A B	2.500	4	7
В В	2.000	4	4
B B	1.750	4	6
В	1.250	4	5

Class	Levels	Values
FECHA	1	250294
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Number of observations in by group = 40

Dependent Variab	le: NMB	0. (
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	26.40000000	2.20000000	1.02	0.4556
Error	27	58.00000000	2.14814815		
Corrected Total	39	84.40000000			
	R-Square	c.v.	Root MSE		NMB Mean
	0.312796	30.53450	1.465656		4.80000000
Dependent Variable: NMB					
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	22.40000000 4.00000000	2.48888889 1.33333333	1.16 0.62	0.3591 0.6077
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	22.40000000	2.48888889	1.16	0.3591

4.00000000

1.33333333 0.62 0.6077

REP

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

Alpha= 0.01 df= 27 MSE= 2.148148

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 2.873 2.996 3.082 3.139 3.187 3.226 3.258 3.284 3.306

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	TRAT
Α	6.500	4	10
A A	5.500	4	7
A A	5.000	4	3
A A	5.000	4	2
Α	4.750		9
A A		4	
A A	4.750	4	6
A A	4.500	4	8
A A	4.250	4	5
Α	4.000	4	1
A A	3.750	4	4

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	261294
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variabl	le: NMB	2	W		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	0.50000000	0.04166667	0.80	0.6442
Error	27	1.40000000	0.05185185		
Corrected Total	39	1.90000000			
	R-Square	c.v.	Root MSE		NMB Mean
	0.263158	455.4200	0.227710		0.05000000

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	0.4000000	0.04444444	0.86	0.5728
REP	3	0.10000000	0.03333333	0.64	0.5941
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	0.40000000	0.0444444	0.86	0.5728
REP	3	0.10000000	0.03333333	0.64	0.5941

SAS

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $% \left(1\right) =\left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left(1\right) +\left(1\right) \left(1\right) \left($

Alpha= 0.01 df= 27 MSE= 0.051852

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 0.446 0.465 0.479 0.488 0.495 0.501 0.506 0.510 0.514

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	TRAT
A	0.250	4	1
A A	0.250	4	10
A A	0.000	4	3
A A	0.000	4	4
A A	0.000	4	5
A A	0.000	4	6
A A	0.000	4	7
A A	0.000	4	8
A A	0.000	4	9
A A	0.000	4	2

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	270194
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variab	le: NMB				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	7.30000000	0.60833333	0.73	0.7137
Error	27	22.60000000	0.83703704		
Corrected Total	39	29.90000000			
	R-Square	C.V.	Root MSE		NMB Mean
	0.244147	46.91781	0.914897		1.95000000
Dependent Variab	le: NMB				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	5.40000000 1.90000000	0.60000000 0.63333333	0.72 0.76	0.6891 0.5282
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	5.40000000 1.90000000	0.60000000 0.63333333	0.72 0.76	0.6891 0.5282

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $\,$

Alpha= 0.01 df= 27 MSE= 0.837037

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 1.794 1.870 1.924 1.960 1.990 2.014 2.034 2.050 2.064

Duncan Grouping	Mean	N	TRAT
A	2.750	4	10
А	2.250	4	2
A A	2.000	4	1
A A	2.000	4	3
A A	2.000	4	9
A A	2.000	4	7
A A	1.750	4	8
A A	1.750	4	6
A A	1.750	4	5
A A	1.250	4	4

Class	Levels	Values
FECHA	1	281293
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variabl	e: NMB				
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	6.80000000	0.56666667	0.55	0.8639
Error	27	27.97500000	1.03611111		
Corrected Total	39	34.77500000			
	R-Square	c.v.	Root MSE		NMB Mean
	0.195543	110.0427	1.017895	0	.92500000
Dependent Variabl	e: NMB				
Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	3.52500000 3.27500000	0.39166667 1.09166667	0.38 1.05	0.9356 0.3850
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT REP	9 3	3.52500000 3.27500000	0.39166667 1.09166667	0.38 1.05	0.9356 0.3850

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.01 df= 27 MSE= 1.036111

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 1.995 2.081 2.141 2.180 2.213 2.241 2.263 2.281 2.296

Means with the same letter are not significantly different.

Duncan Grouping	Mean	N	TRAT
A	1.250	4	1
A A	1.250	4	10
A A	1.250	4	8
A A	1.000	4	5
A A	1.000	4	9
A A	1.000	4	2
A A A	0.750	4	7
Α	0.750	4	4
A A	0.750	4	6
A A	0.250	4	3

General Linear Models Procedure Class Level Information

Class	Levels	Values
FECHA	1	290194
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Dependent Variab	le: NMB	0	W		
Source	DF	Sum of Squares	Mean Square	F Value	Pr > F
Model	12	18.00000000	1.50000000	3.69	0.0023
Error	27	10.97500000	0.40648148		
Corrected Total	39	28.97500000			
	R-Square	c.v.	Root MSE		NMB Mean
	0.621225	35.91882	0.637559		1.77500000

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	17.72500000	1.96944444	4.85	0.0007
REP	3	0.27500000	0.09166667	0.23	0.8778
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	17.72500000	1.96944444	4.85	0.0007
REP	3	0.27500000	0.09166667	0.23	0.8778

SAS

General Linear Models Procedure

Duncan's Multiple Range Test for variable: NMB

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $\,$

Alpha= 0.01 df= 27 MSE= 0.406481

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 1.250 1.303 1.341 1.366 1.386 1.403 1.417 1.429 1.438

Duncan Group	ing		Mean	N	TRAT
	A		3.250	4	10
В	A A		2.250	4	2
В В В	A A A	C C	2.000	4	1
В В	A	C	2.000	4	8
В		С	1.750	4	3
B B B		C C	1.750	4	9
В В		C	1.750	4	7
В В		C	1.250	4	6
В		C	1.000	4	4
		C	0.750	4	5

SAS

Class	Levels	Values
TRAT	10	1 2 3 4 5 6 7 8 9 10
REP	4	1 2 3 4

Number of observations in data set = 40

SAS 12:	7 Saturday,	May 28,	1994	7
---------	-------------	---------	------	---

General Linear Models Procedure

Dependent Variable Source	: FRUTO MAD	URO SANO (FMS) Sum of Squares	Mean Square	F Value	Pr > F
30di ce	UF	3quai es	Square	rvatue	PI > F
Model	12	15773.00500	1314.41708	1.69	0.1241
Error	27	20944.07900	775.70663		
Corrected Total	39	36717.08400			
	R-Square	c.v.	Root MSE		FMS Mean
	0.429582	44.25792	27.85151	1	62.9300000

SAS

General Linear Models Procedure

Dependent	Variable:	FMS
Debendent	variable:	rms

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	7991.179000	887.908778	1.14	0.3675
REP	3	7781.826000	2593.942000	3.34	0.0338
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	7991.179000	887.908778	1.14	0.3675
REP	3	7781.826000	2593.942000	3.34	0.0338

SAS General Linear Models Procedure

Dependent Variable:	FRUTO CON	VIROSIS (FCV) Sum of	Mean		
Source	DF	Squares	Square	F Value	Pr > F
Model	12	1557.635000	129.802917	3.20	0.0059
Error	27	1096.004750	40.592769		
Corrected Total	39	2653.639750			
R-	-Square	c.v.	Root MSE		FCV Mean
0.	.586981	27.40615	6.371245		23.2475000

General Linear Models Procedure

Dependent Variable: FCV

Source	DF	Type I SS	Mean Square	F Value	Pr > F
TRAT	9	1431.892250	159.099139	3.92	0.0028
REP	3	125.742750	41.914250	1.03	0.3939
Source	DF	Type III SS	Mean Square	F Value	Pr > F
TRAT	9	1431.892250	159.099139	3.92	0.0028
REP	3	125.742750	41.914250	1.03	0.3939

Duncan's Multiple Range Test for variable: FMS

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate

Alpha= 0.05 df= 27 MSE= 775.7066

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 40.38 42.43 43.84 44.72 45.43 46.00 46.44 46.81 47.10

Duncan Grou	ıpīng	Mean	N	TRAT
	A	90.25	4	8
В В	A A A	79.75	4	7
В В	A A	70.12	4	4
В В	A A	64.78	4	9
B B	A A	63.38	4	5
В В	A A	61.55	4	3
В В	A A	60.38	4	6
В В	A A	52.65	4	1
B B	Ä	46.58	4	2
В		39.88	4	10

Duncan¹s Multiple Range Test for variable: FCV

NOTE: This test controls the type I comparisonwise error rate, not the experimentwise error rate $\,$

Alpha= 0.05 df= 27 MSE= 40.59277

Number of Means 2 3 4 5 6 7 8 9 10 Critical Range 9.24 9.71 10.03 10.23 10.39 10.52 10.62 10.71 10.77

Duncan Grouping	Mean	N	TRAT
A	31.375	4	5
A A	31.000	4	10
A A	30.525	4	8
B A	25.125	4	2
B A B A	24.250	4	9
B A B A	21.350	4	1
B A B A	21.325	4	7
В В	17.000	4	4
B B	15.750	4	6
B B	14.775	4	3